
FunctionGraph

Developer Guide

Issue 01

Date 2026-01-04

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2026. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Function Development Overview.. 1
1.1 Function Runtimes.. 1
1.2 Initializer... 4
1.3 Supported Trigger Events for FunctionGraph.. 6
1.4 Function Project Packaging Rules... 23
1.5 Referencing DLLs in Functions... 28

2 Node.js... 30
2.1 Function Development Overview.. 30
2.2 Developing a Node.js Event Function.. 34
2.3 Developing an HTTP Function Using Node.js... 39
2.4 Node.js Function Template.. 41
2.5 Creating a Dependency for a Node.js Function..42
2.6 Developing a Node.js Function Using Huawei Cloud SDKs... 43

3 Python.. 48
3.1 Function Development Overview.. 48
3.2 Developing a Python Event Function...51
3.3 Creating an Event Function Using a Container Image Built with Python...56
3.4 Creating an HTTP Function Using a Container Image Built with Python... 59
3.5 Python Function Template...62
3.6 Creating a Dependency for a Python Function.. 62
3.7 Developing a Python Function Using the Huawei Cloud SDK.. 64

4 Java... 68
4.1 Function Development Overview.. 68
4.2 Developing a Java Event Function.. 76
4.2.1 Developing Functions in Java (Using IDEA to Create a Java Project)... 76
4.2.2 Developing Functions in Java (Using an IDEA Maven Project)... 85
4.3 Developing an HTTP Function Using Java... 90
4.4 Creating an Event Function Using a Container Image Built with Java.. 91
4.5 Creating an HTTP Function Using a Container Image Built with Java...95
4.6 Java Function Template.. 98
4.7 Creating a Dependency for a Java Function..99

5 Go..100

FunctionGraph
Developer Guide Contents

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

5.1 Function Development Overview... 100
5.2 Developing a Go Event Function...106
5.3 Developing an HTTP Function Using Go..114
5.4 Creating an Event Function Using a Container Image Built with Go...116
5.5 Creating an HTTP Function Using a Container Image Built with Go... 119

6 C#..123
6.1 C# Function Development Overview...123
6.2 Developing a C# Event Function...126
6.2.1 Developing a C# Event Function Using IDE...126
6.2.2 JSON Serialization and Deserialization... 132
6.2.2.1 Developing a C# Function Using .NET Core CLI... 132
6.2.2.2 Developing a C# Function Using Visual Studio.. 135

7 PHP... 141
7.1 PHP Function Development Overview.. 141
7.2 Developing a PHP Event Function.. 143
7.3 PHP Function Template.. 147
7.4 Creating a Dependency for a PHP Function... 147

8 Custom Runtime..149

9 Development Tools... 156
9.1 FunctionGraph and IaC...156
9.2 Local Debugging with VSCode...159
9.3 Eclipse Plug-in... 164
9.4 PyCharm Plug-in... 167
9.5 Serverless Devs.. 173
9.5.1 Introduction...173
9.5.2 Key Configuration... 174
9.5.3 Using Commands.. 175
9.5.3.1 deploy.. 175
9.5.3.2 version... 177
9.5.3.3 Project Migration fun2s... 179
9.5.3.4 remove...180
9.5.3.5 alias.. 184
9.5.3.6 YAML File..187
9.5.4 Huawei Cloud FunctionGraph YAML Specifications..192
9.5.5 Global Parameters of Serverless Devs... 193
9.6 Serverless Framework... 194
9.6.1 Usage Guide..194
9.6.1.1 Introduction... 194
9.6.1.2 Quick Start... 196
9.6.1.3 Installation... 197
9.6.1.4 Credentials... 198

FunctionGraph
Developer Guide Contents

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

9.6.1.5 Service... 198
9.6.1.6 Functions.. 201
9.6.1.7 Events...203
9.6.1.8 Deploy..203
9.6.1.9 Package... 204
9.6.1.10 Variables... 206
9.6.2 CLI Reference.. 206
9.6.2.1 Create...207
9.6.2.2 Install... 207
9.6.2.3 Package... 208
9.6.2.4 Deploy..208
9.6.2.5 Info..208
9.6.2.6 Invoke.. 209
9.6.2.7 Logs.. 209
9.6.2.8 Remove..210
9.6.3 Event list... 210
9.6.3.1 APIG Events..210
9.6.3.2 OBS Events... 211

10 Automated Deployment..212
10.1 Preparing an Environment.. 212
10.2 Hosting Function Code with CodeArts... 214
10.2.1 Step 1: Create a Project.. 214
10.2.2 Step 2: Host Function Code...215
10.2.3 Step 3: Configure a Deployment Host...216
10.2.4 Step 4: Set Up a Pipeline for Updating the Function Deployment Script... 217
10.2.5 Step 5: Set Up a Function Update Pipeline... 222
10.3 Sample Code of deploy.py...229
10.4 Analyzing cam.yaml.. 232

FunctionGraph
Developer Guide Contents

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

1 Function Development Overview

1.1 Function Runtimes

Runtime
To create a function in FunctionGraph, you need to specify a runtime that passes
events, context, and responses. Choose from a built-in runtime or customize your
own.

Supported Runtimes
The Node.js, Java, Python, Go, C#, PHP, Cangjie, and custom runtimes are
supported. Table 1-1 lists the supported runtimes.

Table 1-1 Runtime description

Runt
ime

Supported Version SDK Developm
ent
Overview

Node
.js

6.10, 8.10, 10.16, 12.13, 14.18,
16.17, 18.15, 20.15

- Function
Developm
ent
Overview

Pyth
on

2.7, 3.6, 3.9, 3.10, 3.12 - Function
Developm
ent
Overview

Java 8, 11, 17, 21 (only available in
ME-Riyadh and TR-Istanbul)

Java SDK (software
package verification file:
fss-java-sdk_sha256)

Function
Developm
ent
Overview

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/java/fss-java-sdk-2.0.5.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/sdk/fss-java-sdk.sha256

Runt
ime

Supported Version SDK Developm
ent
Overview

C# .NET Core 2.1, .NET Core
3.1, .NET Core 6.0, .NET Core
8.0 (only in ME-Riyadh and TR-
Istanbul)

C# SDK (software
package verification file:
fssCsharp_sha256)

C#
Function
Developm
ent
Overview

Go 1.x Go 1.x SDK (software
package verification file:
Go SDK_sha256)

Function
Developm
ent
Overview

PHP 7.3 and 8.3 - PHP
Function
Developm
ent
Overview

Cang
jie

1.0 - -

Cust
om

- - -

Runtime Deprecation
For security and sustainable development, FunctionGraph will no longer provide
technical support and security updates for some runtimes.

Table 1-2 shows the deprecation policy, which is divided into three stages.

Table 1-2 Deprecation stage description

Stage Description

Stage 1: Notify
customers 180 days in
advance

You will be notified of the runtime deprecation
through product notices, runtime deprecation marks,
and emails by Huawei Cloud.

Stage 2: Deprecate
runtimes

Security patches, feature updates, or technical support
for these runtimes will no longer be provided by
Huawei Cloud. Functions cannot be created using these
runtimes. Existing functions can continue to update
their code or configurations and run.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://functionstage-sdk.obs.myhuaweicloud.com/csharp-sdk/fssCsharp2.0-1.0.1.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/sdk/fssCsharp.sha256
https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/functiongraph-go-runtime-sdk-1.0.1.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/sdk/fss-go-sdk.sha256

Stage Description

Stage 3: 30 days after
runtime deprecation

Security patches, feature updates, or technical support
for these runtimes will no longer be provided by
Huawei Cloud. Functions cannot be created or updated
using these runtimes. Existing functions can continue
running. You are advised to migrate your functions to
the latest supported runtimes for technical support and
security updates.

Table 1-3 is our runtime deprecation plan. Runtimes not included in this table are
not subject to this deprecation plan.

Table 1-3 Runtime deprecation plan

Runtime Stage 1 Stage 2 Stage 3

Node.js 6.10 December 15,
2025

June 15, 2026 July 15, 2026

Node.js 8.10 December 15,
2025

June 15, 2026 July 15, 2026

Python 2.7 December 15,
2025

June 15, 2026 July 15, 2026

Sample Project Packages

Table 1-4 provides the links for downloading the sample project packages
mentioned in this document. You can download the project packages to a local
path and upload them when creating functions.

For the operation process of each runtime, see the event function development
sections.

Table 1-4 Download links of the sample project packages

Function Project Package Software Package
Verification File

Node.js
function

fss_examples_nodejs.zip fss_examples_nodejs.sha2
56

Python
function

fss_examples_python3.zip fss_examples_python3_sh
a256

Java
function

fss_example_java17.jar
demo-with-
dependencies_java17.jar (maven
project)

fss_example_java_sha256
demo-with-
dependencies_java17.jar.s
ha256

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_nodejs.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/public-material-sha256/fss_examples_nodejs.zip.sha256
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/public-material-sha256/fss_examples_nodejs.zip.sha256
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/fss_examples_python3.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/fss_examples_python3.zip.sha256
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/fss_examples_python3.zip.sha256
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/fss_example_java17.jar
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/demo-with-dependencies_java17.jar
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/demo-with-dependencies_java17.jar
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/demo-with-dependencies_java17.jar
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/fss_example_java17.jar.sha256
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/demo-with-dependencies_java17.jar.sha256
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/demo-with-dependencies_java17.jar.sha256
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/examples/demo-with-dependencies_java17.jar.sha256

Function Project Package Software Package
Verification File

PHP
function

fss_examples_php7.3.zip fss_examples_php7.3_sha
256

Helpful Links
● For details about the trigger events supported by each runtime, see

Supported Trigger Events for FunctionGraph.
● For details about the packaging specifications of each runtime project, see

Function Project Packaging Rules.

1.2 Initializer

Overview

An initializer is a logic entry for initializing functions. For a function with an
initializer, FunctionGraph invokes the initializer to initialize the function and then
invokes the handler to process function requests. For a function without an
initializer, FunctionGraph only invokes the handler to process function requests.

Applicable Scenario

FunctionGraph executes a function in the following steps:

1. Allocate container resources to the function.
2. Download function code.
3. Use the runtime to load the function code.
4. Initialize the function.
5. Process the function request and return the result.

Steps 1, 2, and 3 are performed during a systematic cold start, ensuring a stable
latency through proper resource scheduling and process optimization. Step 4 is
performed during an application-layer cold start in complex scenarios, such as
loading large models for deep learning, building database connection pools, and
loading function dependencies.

To reduce the latency caused by an application-layer cold start, FunctionGraph
provides the initializer to identify function initialization logic for proper resource
scheduling.

Benefits of the Initializer
● Isolate function initialization and request processing to enable clearer

program logic and better structured and higher-performance code.
● Ensure a smooth function upgrade to prevent performance loss during the

application layer's cold start initialization. Enable new function instances to
automatically execute initialization logic before processing requests.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_php7.3.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/public-material-sha256/fss_examples_php7.3.zip.sha256
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/public-material-sha256/fss_examples_php7.3.zip.sha256

● Identify the overhead of application layer initialization, and accurately
determine the time for resource scaling and the quantity of required
resources. This feature makes request latency more stable when the
application load increases and more function instances are required.

● If there are continuous requests and the function is not updated, the system
may still reclaim or update existing containers. Although no code starts on
the platform side, there are cold starts on the service side. The initializer can
be used to ensure that requests can be processed properly.

Features of the Initializer
The initializer of each runtime has the following features:

● No custom parameters
The initializer does not support custom parameters and only uses the
variables in context for logic processing.

● No return values
No values will be returned for initializer invocation.

● Initialization timeout
You can set an initialization timeout (≤ 300s) different from the timeout for
invoking the handler.

● Execution duration
Function instances are processes that execute function logic in a container
and automatically scale if the number of requests changes. When a new
function instance is generated, the system invokes the initializer and then
executes the handler logic if the invocation is successful.

● One-time execution
After each function instance starts, the initializer can only be executed once. If
an instance fails to execute the initializer, the instance is abandoned and
another instance starts to execute the initializer. A maximum of three
attempts are allowed. If the initializer is executed successfully, the instance
will only process requests upon invocation and will no longer execute the
initializer again within its lifecycle.

● Naming rule
For all runtimes except Java, the initializer can be named in the format of
[File name].[Initializer name], which is similar with the format of a handler
name. For Java, a class needs to be defined to implement the predefined
initializer.

● Billing
The initializer execution duration will be billed at the same rate as the
function execution duration.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

1.3 Supported Trigger Events for FunctionGraph

Supported Trigger Events
Table 1-5 lists the supported cloud services and trigger events for FunctionGraph.
After an event source trigger is configured, the corresponding function is
automatically invoked when an event is detected.

Table 1-5 Cloud service events supported by FunctionGraph

Cloud Service/
Feature

Trigger Event

Timer You can schedule a timer (timer example event) to
invoke function code based on a fixed rate of minutes,
hours, or days or a cron expression.
For details, see Using a Timer Trigger.

API Gateway
(APIG)

FunctionGraph functions are invoked over HTTP or HTTPS
by defining REST APIs and endpoints on APIG. You can
map each API operation (such as, GET and PUT) to a
specific function. APIG invokes the relevant function when
an HTTPS request (APIG example event) is sent to the
API endpoint.
For details, see Using an APIG (Dedicated) Trigger.

ROMA Connect
(APIC)

With API operations such as GET and PUT mapped to
specific functions, APIC can invoke corresponding
functions to perform operations when receiving relevant
HTTPS or HTTP requests.
For details, see Using an APIC Trigger.

Data Ingestion
Service (DIS)

DIS can ingest large amounts of data in real time. You can
create a function to automatically poll a DIS stream and
process all new data records, such as website click
streams, financial transactions, social media streams, IT
logs, and data tracking events (DIS example event).
FunctionGraph periodically polls the stream for new data
records.
For details, see Using a DIS Trigger.

Distributed
Message Service
(DMS) for Kafka

When a message is created in a Kafka topic,
FunctionGraph consumes the message and triggers the
function to perform other operations (Kafka example
event)).
For details about how to use Kafka triggers, see:
● Using a Kafka Trigger
● Using an Open-Source Kafka Trigger

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0207.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0204.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1085.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0206.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0214.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1838.html

Cloud Service/
Feature

Trigger Event

Distributed
Message Service
(DMS) for
RabbitMQ

When a DMS for RabbitMQ trigger is used, FunctionGraph
periodically polls for new messages in a specific topic
bound to the exchange of a RabbitMQ instance and
passes the messages as input parameters to invoke
functions (RabbitMQ example event).
For details, see Using a DMS (for RabbitMQ) Trigger.

GeminiDB
MongoDB

If you create a GeminiDB Mongo trigger for a function,
any updates (GeminiDB MongoDB example event) to
the specified database table will trigger the function.
For details, see Using a GeminiDB Mongo Trigger.

IoT Device Access
(IoTDA)

FunctionGraph can use IoTDA trigger to track device
properties, message reporting, and status changes as well
as analyze, sort out, and measure data flows (IoTDA
example event).
For details, see Using an IoTDA Trigger.

Simple Message
Notification (SMN)

Simple Message Notification (SMN) sends messages to
email addresses, mobile phones, or HTTP/HTTPS URLs. If
you create a function with an SMN trigger, messages
published to a specified topic will be passed as a
parameter (SMN example event) to invoke the function.
Then, the function processes the event, for example,
publishing messages to other SMN topics or sending them
to other cloud services.
For details, see Using an SMN Trigger.

Object Storage
Service (OBS)

Create a function for processing OBS events, such as
object creation or deletion (OBS example events). When
an image is uploaded to a specified bucket, OBS invokes
the function to read the image and create a thumbnail.
For details, see:
● Using an OBS Trigger.

EventGrid (EG) EventGrid (EG) receives messages from event sources and
passes the message payload as a parameter (EG example
event) to invoke a function. Then, the function processes
the events, for example, sending messages to other cloud
services.
EventGrid supports the following event sources:
● Creating an EG Trigger (OBS Application Service)
● Creating an EG Trigger (RocketMQ custom event

source)

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1821.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0210_00.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1843.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0202.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0205.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0228.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0227.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0227.html

Trigger Event Examples

Timer

● TIMER example event. For details about the parameters, see Table 1-6.
{
 "version": "v2.0",
 "time": "2023-06-01T08:30:00+08:00",
 "trigger_type": "TIMER",
 "trigger_name": "Timer_001",
 "user_event": "User Event"
}

Table 1-6 Parameters of a timer example event

Parameter Type Example Value Description

version String v2.0 Event version

time String 2023-06-01T08:3
0:00+08:00

Time when an
event occurs

trigger_type String TIMER Trigger type

trigger_name String Timer_001 Trigger name

user_event String User Event Additional
information of
the trigger

API Gateway (dedicated)

● API Gateway event example. For details about the parameters, see Table 1-7.
{
 "body": "",
 "requestContext": {
 "apiId": "bc1dcffd-aa35-474d-897c-d53425a4c08e",
 "requestId": "11cdcdcf33949dc6d722640a13091c77",
 "stage": "RELEASE"
 },
 "queryStringParameters": {
 "responseType": "html"
 },
 "httpMethod": "GET",
 "pathParameters": {},
 "headers": {
 "accept-language": "zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2",
 "accept-encoding": "gzip, deflate, br",
 "x-forwarded-port": "443",
 "x-forwarded-for": "103.218.216.98",
 "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
 "upgrade-insecure-requests": "1",
 "host": "50eedf92-c9ad-4ac0-827e-d7c11415d4f1.apigw.region.cloud.com",
 "x-forwarded-proto": "https",
 "pragma": "no-cache",
 "cache-control": "no-cache",
 "x-real-ip": "103.218.216.98",
 "user-agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:57.0) Gecko/20100101 Firefox/57.0"
 },
 "path": "/apig-event-template",
 "isBase64Encoded": true
}

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Table 1-7 Parameters of an APIG example event

Parameter Type Example Value Description

body String Example: {\"test
\":\"body\"}"

Actual request in
string format

requestContext Map Reference
example code

Request information,
including the API
gateway
configuration,
request ID,
authentication
information, and
source

httpMethod String GET HTTP method

queryStringPara-
meters

Map Reference
example code

Query strings
configured in APIG
and their actual
values

pathParameters Map Reference
example code

Path parameters
configured in APIG
and their actual
values

headers Map Reference
example code

Complete headers

path String /apig-event-
template

Complete path

isBase64Encoded Boolean true The default value is
true.

Constraints:
– When calling a function using APIG, isBase64Encoded is valued true by

default, indicating that the request body transferred to FunctionGraph is
encoded using Base64 and must be decoded for processing.

– The function must return characters strings by using the following
structure.
{
 "isBase64Encoded": true|false,
 "statusCode": httpStatusCode,
 "headers": {"headerName":"headerValue",...},
 "body": "..."
}

CTS

DDS

● DDS example event. For details about the parameters, see Table 1-8.
{
 "records": [

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

 {
 "event_source": "dds",
 "event_name": "insert",
 "region": "region",
 "event_version": "1.0",
 "dds": {
 "size_bytes": "100",
 "token": "{\"_data\":
\"825D8C2F4D0000001529295A100474039A3412A64BA89041DC952357FB4446645F696400645D8C2F
8E5BECCB6CF5370D6A0004\"}",
 "full_document": "{\"_id\": {\"$oid\": \"5d8c2f8e5beccb6cf5370d6a\"},\"name\": \"dds
\",\"age\": {\"$numberDouble\": \"52.0\"}}",
 "ns": "{\"db\": \"functiongraph\",\"coll\": \"person\"}"
 },
 "event_source_id": "e6065860-f7b8-4cca-80bd-24ef2a3bb748"
 }
]
}

Table 1-8 Parameters of a DDS example event

Parameter Type Example Value Description

region String ap-southeast-3 Region where
the DDS instance
is located

event_version String 1.0 Event version

event_source String dds Event source

event_name String insert Event name

size_bytes Int 100 Message bytes

token String Reference
example code

Base64-encoded
data

full_document String Reference
example code

Complete file
information

ns String Reference
example code

Column name

event_source_id String Reference
example code

Event source ID

DIS

● DIS example event. For details about the parameters, see Table 1-9.
{
 "ShardID": "shardId-0000000000",
 "Message": {
 "next_partition_cursor":
"eyJnZXRJdGVyYXRvclBhcmFtIjp7InN0cmVhbS1uYW1lIjoiZGlzLXN3dGVzdCIsInBhcnRpdGlvbi1pZCI6InN
oYXJkSWQtMDAwMDAwMDAwMCIsImN1cnNvci10eXBlIjoiVFJJTV9IT1JJWk9OIiwic3RhcnRpbmctc2Vxd
WVuY2UtbnVtYmVyIjoiNCJ9LCJnZW5lcmF0ZVRpbWVzdGFtcCI6MTUwOTYwNjM5MjE5MX0",
 "records": [
 {
 "partition_key": "shardId_0000000000",
 "data": "d2VsY29tZQ==",
 "sequence_number": "0"

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

 },
 {
 "partition_key": "shardId_0000000000",
 "data": "dXNpbmc=",
 "sequence_number": "1"
 },
 {
 "partition_key": "shardId_0000000000",
 "data": "RnVuY3Rpb25TdGFnZQ==",
 "sequence_number": "2"
 },
 {
 "partition_key": "shardId_0000000000",
 "data": "c2VydmljZQ==",
 "sequence_number": "3"
 }
],
 "millis_behind_latest": ""
 },
 "Tag": "latest",
 "StreamName": "dis-swtest"
}

Table 1-9 Parameters of a DIS example event

Parameter Type Example Value Description

ShardID String shardId-0000000
000

Partition ID

next_partition_cu
rsor

String Reference
example code

Next partition
cursor

Records Map Reference
example code

Data records
stored in a DIS
stream

partition_key String Reference
example code

Partition key

data String Reference
example code

Data blocks,
which are added
by the data
producer to the
stream

sequence_numbe
r

Int Reference
example code

Record ID, which
is automatically
allocated by DIS

Tag String latest Stream tag

StreamName String dis-swtest Stream name

DMS (for Kafka)/Kafka (Open-Source)

● Kafka example event. For details about the parameters, see Table 1-10.
{
 "event_version": "v1.0",
 "event_time": 1576737962,
 "trigger_type": "KAFKA",

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

 "region": "region",
 "instance_id": "81335d56-b9fe-4679-ba95-7030949cc76b",
 "records": [
 {
 "messages": [
 "kafka message1",
 "kafka message2",
 "kafka message3",
 "kafka message4",
 "kafka message5"
],
 "topic_id": "topic-test"
 }
]
}

Table 1-10 Parameters of a Kafka example event

Parameter Type Example Value Description

event_version String v1.0 Event version

event_time String Reference
example code

Time when an
event occurs

trigger_type String KAFKA Event type

region String ap-southeast-3 Region where a
Kafka instance
resides

instance_id String 81335d56-
b9fe-4679-
ba95-7030949cc
76b

Kafka instance
ID

messages String Reference
example code

Message content

topic_id String topic-test Message ID

DMS (for RabbitMQ)

● DMS for RabbitMQ example event. For details about the parameters, see
Table 1-11.
{
 "event_version": "v1.0",
 "event_time": 1576737962,
 "trigger_type": "RABBITMQ",
 "region": "region",
 "records": [
 {
 "messages": [
 "rabbitmq message1",
 "rabbitmq message2",
 "rabbitmq message3",
 "rabbitmq message4",
 "rabbitmq message5"
],
 "instance_id": "81335d56-b9fe-4679-ba95-7030949cc76b",
 "exchange": "exchange-test"
 }

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

]
}

Table 1-11 DMS for RabbitMQ parameters

Parameter Type Example Value Description

event_version String v1.0 Event version

region String ap-southeast-3 Region where a
RabbitMQ
instance resides

instance_id String 81335d56-
b9fe-4679-
ba95-7030949cc
76b

RabbitMQ
instance ID

GeminiDB MongoDB

● GeminiDB MongoDB example event. For details about the parameters, see
Table 1-12.
{
 "records": [
 {
 "event_name": "\"insert\"",
 "event_version": "1.0",
 "event_source": "gauss_mongo",
 "region": "cn-north-xx",
 "gauss_mongo": {
 "full_document": "{\"_id\": {\"$oid\":\"5f61de944778db5fcded3f87\"},\"zhangsan\":
\"zhangsan\"}",
 "ns": "{\"db\": \"zhangsan\",\"coll\": \"zhangsan\"}",
 "size_bytes": "100",
 "token": "{\"_data\":
\"825F61DE940000000129295A1004A2D9AE61206C43A5AF47CAF7C5C00C5946645F696400645F61DE
944778DB5FCDED3F870004\"}"
 },
 "event_source_id": "51153d19-2b7d-402c-9a79-757163258a36"
 }
],
 "vernier": "{\"_data\":
\"825F61DE940000000129295A1004A2D9AE61206C43A5AF47CAF7C5C00C5946645F696400645F61DE
944778DB5FCDED3F870004\"}"
}

Table 1-12 Parameters of a GeminiDB MongoDB example event

Parameter Type Example Value Description

region String ap-southeast-3 Region where a
GeminiDB
instance resides

event_source String gemini_mongo Event source

event_version String 1.0 Event version

full_document String Reference
example code

Complete file
information

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Parameter Type Example Value Description

size_bytes Int 100 Message bytes

token String Reference
example code

Base64-encoded
data

event_source_id String Reference
example code

Event source ID

vernier String Reference
example code

Cursor

GeminiDB DynamoDB

● IoTDA example event. For details about the parameters, see Table 1-13.
{
 "resource" : "device",
 "event" : "create",
 "event_time" : "20240919T011335Z",
 "event_time_ms" : "2024-09-19T01:13:35.854Z",
 "request_id" : "75127474-1a26-4578-8847-3128d6101954",
 "notify_data" : {
 "body" : {
 "app_id" : "3d40caf3ddfc4e83815b54b50f13aad7",
 "app_name" : "DefaultApp_6439vdv2",
 "device_id" : "66eb7a0ffa8d9c36870c6892_ttytytytytytyt",
 "node_id" : "ttytytytytytyt",
 "gateway_id" : "66eb7a0ffa8d9c36870c6892_ttytytytytytyt",
 "node_type" : "GATEWAY",
 "auth_info" : {
 "auth_type" : "SECRET",
 "secure_access" : false,
 "timeout" : 0
 },
 "product_id" : "66eb7a0ffa8d9c36870c6892",
 "product_name" : "test",
 "status" : "INACTIVE",
 "create_time" : "20240919T011335Z"
 }
 }
}

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Table 1-13 Parameters of an IoTDA example event

Parameter Type Example Value Description

resource string device Data source,
which includes
device, device
property, device
message, device
message status,
device status,
batch task,
product, and
device
asynchronous
command
status and run
log.

event string create Triggering
event.

event_time string 20240919T011335Z Event triggering
time in the
character string
format.

event_time_ms string 2024-09-19T01:13:3
5.854Z

Event triggering
time in
datetime
format.

request_id string 75127474-1a26-45
78-8847-3128d610
1954

Request ID.

notify_data Object. For
details, see
Table 1-14.

- Message to
push.

Table 1-14 NotifyData

Parameter Type Example Value Description

body Object. For
details, see
Table 1-15.

- Message
content.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Table 1-15 NotifyDataBody

Paramete
r

Typ
e

Example Value Description

app_id strin
g

3d40caf3ddfc4e83815
b54b50f13aad7

Resource space ID.

app_name strin
g

DefaultApp_6439vdv2 Resource space name.

device_id strin
g

66eb7a0ffa8d9c36870
c6892_ttytytytytytyt

Device ID, used to uniquely
identify a device. The value of
this parameter is specified
during device registration or
allocated by the platform. If
the value is allocated by the
platform, the value is in the
format of
[product_id]_[node_id].
Maximum length: 256
characters

node_id strin
g

ttytytytytytyt Device identifier. This
parameter is set to the IMEI,
MAC address, or serial number.
Maximum length: 64
characters

gateway_i
d

strin
g

66eb7a0ffa8d9c36870
c6892_ttytytytytytyt

Gateway ID, which is the device
ID of the parent device. The
gateway ID is the same as the
device ID if the device is a
directly connected device. If the
device is an indirectly
connected device, the gateway
ID is the device ID of the
directly connected device with
which it associates.

node_type strin
g

GATEWAY Device node type.

product_id strin
g

66eb7a0ffa8d9c36870
c6892

Unique ID of the product
associated with the device.

product_n
ame

strin
g

test Name of the product
associated with the device.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Paramete
r

Typ
e

Example Value Description

status strin
g

INACTIVE Device status.
● ONLINE: The device is

online.
● OFFLINE: The device is

offline.
● ABNORMAL: The device is

abnormal.
● INACTIVE: The device is not

activated.
● FREEZED: The device is

frozen.

create_tim
e

strin
g

20240919T011335Z Time when the device was
registered on the platform. The
value is in the format of
yyyyMMdd'T'HHmmss'Z', for
example, 20151212T121212Z.

auth_info Obje
ct.
For
deta
ils,
see
Tabl
e
1-16
.

- Access authentication
information about the device.

Table 1-16 AuthInfo

Paramete
r

Typ
e

Example Value Description

auth_type strin
g

SECRET Authentication mode. Secret
authentication (SECRET) and
certificate authentication
(CERTIFICATES) are supported. If
secret authentication is used, fill in
secret. If certificate authentication
is used, fill in fingerprint. If
auth_type is not set, secret
authentication is used by default.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Paramete
r

Typ
e

Example Value Description

secure_acc
ess

Bool
ean

false Whether the device is connected to
the platform using a secure
protocol. The default value is true.
● true: The device is connected to

the platform using a secure
protocol.

● false: The device is connected
to the platform using an
insecure protocol.

timeout Inte
ger

0 Validity period of the device
verification code, in seconds. The
default value is 0. If the device has
not been connected to the
platform within the validity period,
the platform deletes the
registration information of the
device. If this parameter is set to 0,
the verification code is always
valid. The recommended value is 0.
Note: This parameter is returned
only when timeout is modified in
the device registration or
modification API.
Minimum value: 0
Maximum value: 2147483647
Default value: 0

For details about device messages, see the IoTDA official website. For
example, device addition notification.

LTS

SMN

● SMN example event. For details about the parameters, see Table 1-17.
{
 "record": [
 {
 "event_version": "1.0",
 "smn": {
 "topic_urn": "topicUrn",
 "timestamp": "2018-01-09T07:11:40Z",
 "message_attributes": null,
 "message": "this is smn message content",
 "type": "notification",
 "message_id": "a51671f77d4a479cacb09e2cd591a983",
 "subject": "this is smn message subject"
 },
 "event_subscription_urn": "functionUrn",
 "event_source": "smn"
 }

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01206.html

],
 "functionname": "test",
 "requestId": "7c307f6a-cf68-4e65-8be0-4c77405a1b2c",
 "timestamp": "Tue Jan 09 2018 15:11:40 GMT+0800 (CST)"
}

Table 1-17 Parameters of an SMN example event

Parame
ter

Type Example Value Description

event_v
ersion

String 1.0 Event version

topic_ur
n

String Reference example
code

Unique ID of an SMN event,
which is generated by the SMN
service

type String notification Event type

requestI
d

String Reference example
code

Request ID, which is generated
by FunctionGraph.
The ID of each request is
unique.

messag
e_id

String Reference example
code

Message ID, which is
generated by SMN.
The ID of each message is
unique.

messag
e

String this is smn message
content

Message content

event_s
ource

String smn Event source

event_s
ubscript
ion_urn

String Reference example
code

Function URN. The value is
unique and can be obtained
from the function details page.

timesta
mp

String Tue Jan 09 2018
15:11:40 GMT+0800
(CST)

Time when an event occurs

OBS

● OBS example event. For details about the parameters, see Table 1-18.
{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventTime": "2018-01-09T07:50:50.028Z",
 "requestParameters": {
 "sourceIPAddress": "103.218.216.125"
 },
 "s3": {
 "configurationId": "UK1DGFPYUKUZFHNQ00000160CC0B471D101ED30CE24DF4DB",
 "object": {

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

 "eTag": "9d377b10ce778c4938b3c7e2c63a229a",
 "sequencer": "00000000160D9E681484D6B4C0000000",
 "key": "job.png",
 "size": 777835
 },
 "bucket": {
 "arn": "arn:aws:s3:::syj-input2",
 "name": "functionstorage-template",
 "ownerIdentity": {
 "PrincipalId": "0ed1b73473f24134a478962e631651eb"
 }
 }
 },
 "Region": "{region}",
 "eventName": "ObjectCreated:Post",
 "userIdentity": {
 "principalId": "9bf43789b1ff4b679040f35cc4f0dc05"
 }
 }
]
}

Table 1-18 Parameters of an OBS example event

Parameter Type Example Value Description

eventVersion String 2.0 Event version

eventTime String 2018-01-09T07:5
0:50.028Z

Time when an
event occurs.
The ISO-8601
time format is
used.

sourceIPAddress String 103.218.216.125 Source IP
address

s3 Map Reference
example code

OBS event
content

object Map Reference
example code

object parameter
description

bucket Map Reference
example code

bucket
parameter
description

arn String arn:aws:s3:::syj-
input2

Bucket ID

ownerIdentity Map Reference
example code

ID of the user
who creates the
bucket

Region String ap-southeast-3 Region where
the bucket is
located

eventName String ObjectCreated:Po
st

Event name

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Parameter Type Example Value Description

userIdentity Map Reference
example code

ID of the Huawei
Cloud account
that initiates the
request

EG

● EG example event. For details about the parameters, see Table 1-19.
Custom RocketMQ event source
{
 "datacontenttype": "application/json",
 "data": {
 "context": "yyyyy"
 },
 "subject": "ROCKETMQ:region:domainId/projectId:ROCKETMQ:eventSourceName",
 "specversion": "1.0",
 "id": "016d5bd3-6231-4e9e-86ef-e451a070d598",
 "source": "eventSourceName",
 "time": "2023-04-07T11:51:10Z",
 "type": "ROCKETMQ:CloudTrace:RocketmqCall"
}

Custom RabbitMQ event source
{
"datacontenttype": "application/json",
 "data": {
 "context": "yyyyy"
 },
 "subject": "RABBITMQ:region:domainId/projectId:RABBITMQ:eventSourceName",
 "specversion": "1.0",
 "id": "016d5bd3-6231-4e9e-86ef-e451a070d598",
 "source": "eventSourceName",
 "time": "2023-04-07T11:51:10Z",
 "type": "RABBITMQ:CloudTrace:RabbitmqCall"
}

OBS application service event source
{
 "channel_id":"b65779ed-d9d0-4a6c-b312-c767226964cf",
 "description":"",
 "name":"subscription-xeak",
 "sources":[
 {
 "id":null,
 "name":"HC.OBS.DWR",
 "detail":{
 "bucket":"eventbucket",
 "objectKeyEncode":true
 },
 "filter":{
 "source":[
 {
 "op":"StringIn",
 "values":[
 "HC.OBS.DWR"
]
 }
],
 "type":[
 {
 "op":"StringIn",
 "values":[
 "OBS:DWR:ObjectCreated:PUT",

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

 "OBS:DWR:ObjectCreated:POST"
]
 }
],
 "subject":{
 "and":[
 {
 "op":"StringStartsWith",
 "values":[
 "/ddd"
]
 }
]
 },
 "data":{
 "obs":{
 "bucket":{
 "name":[
 {
 "op":"StringIn",
 "values":[
 "output-your"
]
 }
]
 }
 }
 }
 },
 "provider_type":"OFFICIAL"
 }
],
 "targets":[
 {
 "id":null,
 "name":"HC.FunctionGraph",
 "detail":{
 "urn":"urn:fss:cn-north-7:c53626012ba84727b938ca8bf03108ef:function:A-nodejs-
lqz:pylog:latest",
 "agency_name":"EG_AGENCY"
 },
 "dead_letter_queue":null,
 "provider_type":"OFFICIAL",
 "transform":{
 "type":"ORIGINAL",
 "value":""
 }
 }
]
}

Table 1-19 Parameters of an EG example event

Parameter Type Example Value Description

datacontenttype String application/json Data type

data Map Reference example
code

Data

subject String Reference example
code

Target value

specversion String 1.0 Version

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Parameter Type Example Value Description

id String Reference example
code

Unique key

source String eventSourceName Event source
name

time String Reference example
code

Subscription
time

type String ROCKETMQ:CloudTrac
e:RocketmqCall

Subscription type

1.4 Function Project Packaging Rules

Packaging Rules
In addition to inline code editing, you can create a function by uploading a local
ZIP file or JAR file, or uploading a ZIP file from Object Storage Service (OBS). For
details, see Creating a Deployment Package. Table 1-20 describes the rules for
packaging a function project.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0152.html

Table 1-20 Function project packaging rules

Runtime JAR File ZIP File ZIP File on OBS

Node.js Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Runtime JAR File ZIP File ZIP File on OBS

PHP Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Runtime JAR File ZIP File ZIP File on OBS

Python Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Java If the function
does not
reference third-
party
components,
compile only the
function project
files into a JAR
file.

If the function
references third-party
components, compile
the function project
files into a JAR file,
and compress all
third-party
components and the
function JAR file into
a ZIP file.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Runtime JAR File ZIP File ZIP File on OBS

Go 1.x Not supported. Zip the compiled file
and ensure that the
name of the binary
file is consistent with
that of the handler.
For example, if the
name of the binary
file is Handler, set
the name of the
handler to Handler.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

C# Not supported. Compress project
files into a ZIP file.
The ZIP file must
contain the following
files:
Project_name.deps.js
on, Project_name.dll,
Project_name.runtim
econfig.json,
Project_name.pdb,
and
HC.Serverless.Functi
on.Common.dll.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Cangjie Not supported. Zip the compiled file
and ensure that the
name of the binary
file is consistent with
that of the handler.
For example, if the
name of the binary
file is
libuser_func_test_su
ccess.so, set the
name of the handler
to
libuser_func_test_su
ccess.so.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Custom Not supported. Compress project
files into a ZIP file.
The ZIP file must
contain a bootstrap
file.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Example ZIP Project Packages
● Example directory of a Nods.js project package

Example.zip Example project package
|--- lib Service file directory

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

|--- node_modules NPM third-party component directory
|--- index.js .js handler file (mandatory)
|--- package.json NPM project management file

● Example directory of a PHP project package
Example.zip Example project package
|--- ext Extension library directory
|--- pear PHP extension and application repository
|--- index.php PHP handler file

● Example directory of a Python project package
Example.zip Example project package
|--- com Service file directory
|--- PLI Third-party dependency PLI directory
|--- index.py .py handler file (mandatory)
|--- watermark.py .py file for image watermarking
|--- watermark.png Watermarked image

● Example directory of a Java project package
Example.zip Example project package
|--- obstest.jar Service function JAR file
|--- esdk-obs-java-3.20.2.jar Third-party dependency JAR file
|--- jackson-core-2.10.0.jar Third-party dependency JAR file
|--- jackson-databind-2.10.0.jar Third-party dependency JAR file
|--- log4j-api-2.12.0.jar Third-party dependency JAR file
|--- log4j-core-2.12.0.jar Third-party dependency JAR file
|--- okhttp-3.14.2.jar Third-party dependency JAR file
|--- okio-1.17.2.jar Third-party dependency JAR file

● Example directory of a Go project package
Example.zip Example project package
|--- testplugin.so Service function package

● Example directory of a C# project package
Example.zip Example project package
|--- fssExampleCsharp2.0.deps.json File generated after project compilation
|--- fssExampleCsharp2.0.dll File generated after project compilation
|--- fssExampleCsharp2.0.pdb File generated after project compilation
|--- fssExampleCsharp2.0.runtimeconfig.json File generated after project compilation
|--- Handler Help file, which can be directly used
|--- HC.Serverless.Function.Common.dll .dll file provided by FunctionGraph

● Example directory of a Cangjie project package
fss_example_cangjie.zip Example project package
|--- libuser_func_test_success.so Service function package

● Custom
Example.zip Example project package
|--- bootstrap Executable boot file

1.5 Referencing DLLs in Functions
You can reference DLLs in functions as follows:

● By default, the root directory and the lib folder in this directory have been
configured in the LD_LIBRARY_PATH environment variable. You only need to
add dynamic link libraries (DLLs) here.

● You can directly modify the LD_LIBRARY_PATH variable in the code.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

CA UTION

For Python, after the interpreter is started and initialized, the operation of
modifying the LD_LIBRARY_PATH variable in the code does not take effect on
the loading of dynamic link libraries (DLLs). Therefore, the path of the DLLs
that Python code depends on must be configured before the interpreter is
started.

● If the dependent .so file is stored in another directory, you can specify it when
setting the LD_LIBRARY_PATH environment variable. For details, see
Configuring Environment Variables.
In the following example, /opt/function/code and /opt/function/code/lib
indicate the project directories of the function code.

Figure 1-1 Setting environment variables

● If a library in a mounted file system is used, specify its directory in the
LD_LIBRARY_PATH variable on the Configuration tab page.

FunctionGraph
Developer Guide 1 Function Development Overview

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0154.html

2 Node.js

2.1 Function Development Overview
FunctionGraph supports the following Node.js runtimes:

● Node.js 6.10
● Node.js 8.10
● Nodejs 10.16
● Nodejs 12.13
● Node.js 16.17
● Node.js 18.15
● Node.js 20.15

Function Syntax

Node.js 6.10

export.handler = function(event, context, callback)

● handler: name of the function that FunctionGraph invokes to execute your
code. The name must be consistent with that you define when creating a
function.

● event: event parameter defined for the function. The parameter is in JSON
format.

● context: runtime information provided for executing the function. For details,
see SDK APIs.

● callback: used to return the defined err and message information to the
frontend. The general syntax is callback(err, message). You can define the
error or message content, for example, a character string.

Node.js 8.10 and later

Node.js 8.10 and later are compatible with the APIs of Node.js 6.10, and supports
an async handler. Responses are output through return.

exports.handler = async (event, context, callback [optional]) => { return data;}

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

The handler of a Node.js function is in the format of [file name].[function name].
You can configure the handler on the FunctionGraph console. For example, if you
set the handler to index.handler in your function, FunctionGraph will load the
handler function defined in the index.js file.

Node.js Initializer

For details about the initializer, see Initializer.

The initializer is in the format of [File name].[Initializer name].

For example, if the initializer is named index.initializer, FunctionGraph loads the
initializer function defined in the index.js file.

To use Node.js to build initialization logic, define a Node.js function as the
initializer. The following is a simple initializer:

exports.initializer = function(context, callback) {
 callback(null, '');
 };

● Function name
The function name exports.initializer must be the initializer function name
specified for a function.
For example, if the initializer is named index.initializer, FunctionGraph loads
the initializer function defined in the index.js file.

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

● callback
The callback parameter is used to return the invocation result. The signature
of this parameter is function(err, data), which is the same as that of the
common callback parameter used in Node.js. If the value of err is not null,
the function will return HandledInitializationError. The value of data is
invalid because no value will be returned for function initialization. You can
set the data parameter to null by referring to the previous example.

Third-Party Components Integrated with the Node.js Runtime

Table 2-1 Third-Party Components Integrated with the Node.js Runtime

Name Usage Version

q Asynchronous method encapsulation 1.5.1

co Asynchronous process control 4.6.0

lodash Common tool and method library 4.17.10

esdk-obs-
nodejs

OBS SDKs 2.1.5

express Simplified web-based application
development framework

4.16.4

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Name Usage Version

fgs-express Uses the Node.js application framework to
run serverless applications and REST APIs
in FunctionGraph and APIG. This
component provides an example of using
the Express framework to build serverless
web applications or services and RESTful
APIs.

1.0.1

request Simplifies HTTP invocation and supports
HTTPS and redirection.

2.88.0

SDK APIs
Table 2-2 describes the context methods provided by FunctionGraph.

Table 2-2 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTi
meInMilliSecon
ds ()

Obtains the remaining running time of a function.

getAccessKey() Obtains the AK (valid for 24 hours) with an agency. If you use
this method, you need to configure an agency for the
function.
FunctionGraph has stopped maintaining the getAccessKey
API in the Runtime SDK. You cannot use this API to obtain
a temporary AK.

getSecretKey() Obtains the SK (valid for 24 hours) with an agency. If you use
this method, you need to configure an agency for the
function.
FunctionGraph has stopped maintaining the getSecretKey
API in the Runtime SDK. You cannot use this API to obtain
a temporary SK.

getSecurityAcce
ssKey()

Obtains the SecurityAccessKey (valid for 24 hours) with an
agency. The cache duration is 10 minutes. That is, the same
content is returned within 10 minutes. To use this method,
you need to configure an agency for the function.

getSecuritySecr
etKey()

Obtains the SecuritySecretKey (valid for 24 hours) with an
agency. The cache duration is 10 minutes. That is, the same
content is returned within 10 minutes. To use this method,
you need to configure an agency for the function.

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Method Description

getSecurityToke
n()

Obtains the SecurityToken (valid for 24 hours) with an
agency. The cache duration is 10 minutes. That is, the same
content is returned within 10 minutes. To use this method,
you need to configure an agency for the function.

getUserData(str
ing key)

Uses keys to obtain the values passed by environment
variables.

getFunctionNa
me()

Obtains the name of a function.

getRunningTim
eInSeconds ()

Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySiz
e()

Obtains the allocated memory.

getCPUNumbe
r()

Obtains CPU usage of a function.

getPackage() Obtains a function group.

getToken() Obtains the token (valid for 24 hours) with an agency. If you
use this method, you need to configure an agency for the
function.

getLogger() Obtains the logger method provided by the context and
returns a log output class. Logs are output in the format of
Time-Request ID-Content by using the info method.
For example, use the info method to output logs:
logg = context.getLogger()
logg.info("hello")

getAlias() Obtains function alias.

As shown in Figure 2-1, you can use the context class in the code editor on the
FunctionGraph console.

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Figure 2-1 Using the context class

Helpful Links
● For details about how to use Node.js to develop an event function, see

Developing a Node.js Event Function.
● For details about how to use Node.js to develop an HTTP function, see

Developing an HTTP Function Using Node.js.
● For details about how to create a dependency package for a Node.js function,

see Creating a Dependency for a Node.js Function.
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

2.2 Developing a Node.js Event Function
You can develop a Node.js event function locally and upload the code file, or
create a function on the FunctionGraph console and edit code online.

For details about the syntax and SDK APIs of Node.js functions, see Function
Development Overview.

Constraints
● If the first parameter returned by callback is not null, the function execution

fails and the HTTP error message defined in the second parameter is returned.
● When an APIG trigger is used, the response must be in the output format

used in this example. The body only supports the following values:
– null: The HTTP response body is empty.
– []byte: The content in this byte array is the body of an HTTP response.
– string: The content in this string is the body of an HTTP response.

● When calling a function using APIG, isBase64Encoded is valued true by
default, indicating that the request body transferred to FunctionGraph is
encoded using Base64 and must be decoded for processing.
The function must return characters strings by using the following structure.

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

{
 "isBase64Encoded": true|false,
 "statusCode": httpStatusCode,
 "headers": {"headerName":"headerValue",...},
 "body": "..."
}

Step 1: Creating a Node.js Function Project
1. Open the local text editor, write the function code, and name the file index.js.

– The following is the code for the sync handler:
exports.handler = function (event, context, callback) {
 const error = null;
 const output = {
 'statusCode': 200,
 'headers':
 {
 'Content-Type': 'application/json'
 },
 'isBase64Encoded': false,
 'body': JSON.stringify(event),
 }
 callback(error, output);
}

– The following is the code for async handler (with runtime 8.10 or later):
exports.handler = async (event, context) => {
 const output =
 {
 'statusCode': 200,
 'headers':
 {
 'Content-Type': 'application/json'
 },
 'isBase64Encoded': false,
 'body': JSON.stringify(event),
 }
 return output;
}

If your Node.js function contains an asynchronous task, use Promise to
execute the task in the current invocation. You can directly return the
declared Promise or await to execute it.
The asynchronous task can be executed only before the function responds
to requests.
exports.handler = async(event, context) => {
 const output =
 {
 'statusCode': 200,
 'headers':
 {
 'Content-Type': 'application/json'
 },
 'isBase64Encoded': false,
 'body': JSON.stringify(event),
 }

 const promise = new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve(output)
 }, 2000)
 })
 return promise;
 // another way
 // res = await promise;
 // return res;
}

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Asynchronous function execution:
To execute the function asynchronously (respond immediately upon
invocation while continuing task execution), you can call the API for
Executing a Function Asynchronously through SDKs or APIs.
For an APIG trigger, click its name to go to the APIG console, and select
Asynchronous for the Invocation Mode. For details, see Asynchronous
Invocation.

2. Package the function project. The following uses an async handler as an
example.
After creating the function project, you get the following directory. Select all
files under the directory and package them into the fss_examples_nodejs.zip
file. Ensure that the function handler is under the root directory after the ZIP
file is decompressed.
You can also download the Node.js function sample project package and
use it directly.

Figure 2-2 Packaging the project files

Step 2: Create a Function
1. Log in to the FunctionGraph console and click Create Function in the upper

right corner.
2. Create a Node.js event function from scratch and click Create Now as shown

inFigure 2-3. The function details page is displayed.

Figure 2-3 Creating a Node.js function

3. Upload the fss_examples_nodejs.zip file packed in Step 1: Creating a
Node.js Function Project by clicking Upload > Local ZIP, as shown in Figure
2-4.

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://support.huaweicloud.com/intl/en-us/api-functiongraph/functiongraph_06_0126.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0390_03.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0390_03.html
https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

The uploaded code will be automatically deployed on the FunctionGraph
console. If you have modified the code, click Deploy again.

Figure 2-4 Uploading the code package

NO TE

Modifying the function handler:
In the navigation pane on the left of the FunctionGraph console, choose Functions >
Function List. Click the name of the function to be set. On the function details page that is
displayed, choose Configuration > Basic Settings and set the Handler parameter, as
shown in Figure 2-5.

Figure 2-5 Handler parameter

● The index of the handler must be consistent with the file name of your function in
Step 1: Creating a Node.js Function Project, because the file name will help to
locate the function file.

● The handler is a function name, which must be consistent with that defined in the
index.js file in Step 1: Creating a Node.js Function Project.

Step 3: Testing the Function
1. On the Code tab, click Test. In the Configure Test Event dialog box, set test,

as shown in Figure 2-6, and click Create.

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Figure 2-6 Configuring a test event

2. Select the configured test event test and click Test.
3. As shown in Figure 2-7, the Execution Result window is displayed on the

right. You can check whether the function is executed successfully.

Figure 2-7 Test result

Function Execution Result Description
The execution result consists of the function output, summary, and log output.

Table 2-3 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage and errorType is
returned. The format is as follows:
{
 "errorMessage": "",
 "errorType":"",
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Parame
ter

Successful Execution Failed Execution

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

Helpful Links
● For details about how to use Node.js to develop an HTTP function, see

Developing an HTTP Function Using Node.js.
● For details about how to create a Node.js function dependency, see Creating

a Dependency for a Node.js Function.
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

2.3 Developing an HTTP Function Using Node.js
This section uses the Koa framework as an example to describe how to develop an
HTTP function using Node.js.

Constraints
● HTTP functions can only use APIG or APIC triggers.

According to the forwarding protocol between FunctionGraph and APIG/APIC,
a valid HTTP function response must contain body(String), statusCode(int),
headers(Map), and isBase64Encoded(boolean). By default, the response is
encoded using Base64. The default value of isBase64Encoded is true. The
same applies to other frameworks.

● By default, port 8000 is enabled for HTTP functions.
● When calling a function using the APIG trigger, isBase64Encoded is valued

true by default, indicating that the request body transferred to FunctionGraph
is encoded using Base64 and must be decoded for processing.
The function must return characters strings by using the following structure.
{
 "isBase64Encoded": true|false,
 "statusCode": httpStatusCode,
 "headers": {"headerName":"headerValue",...},
 "body": "..."
}

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Prerequisites
You have installed the Node.js environment on the local OS. You are advised to
create Node.js dependencies in the EulerOS environment.

Deploying the Koa Framework Using an HTTP Function
Koa is a Node.js-based web development framework, which is mainly used to
build efficient and scalable web applications.

1. Run the following command to create a project folder.
mkdir koa-example && cd koa-example

2. Run the following commands to initialize the Node.js project and download
the koa framework.
npm init -y
npm i koa

After the commands are executed, the node_modules folder and the
package.json and package-lock.json files are added to the folder.

3. Create the index.js file to reference the Koa framework. For details about how
to use this framework, see Koa's guide.
Sample code:
const Koa = require("koa");
const app = new Koa();
const main = (ctx) = >{
 if (ctx.request.path == ("/koa")) {
 ctx.response.type = "application/json";
 ctx.response.body = "Hello World, user!";
 ctx.response.status = 200;
 } else {
 ctx.response.type = "application/json";
 ctx.response.body = 'Hello World!';
 ctx.response.status = 200;
 }
};
app.use(main);
app.listen(8000, '127.0.0.1');
console.log('Node.js web server at port 8000 is running.')

4. You have prepared a bootstrap file as the startup file of the HTTP function.
Add the following content in the file:
/opt/function/runtime/nodejs20.15/rtsp/nodejs/bin/node $RUNTIME_CODE_ROOT/index.js

– /opt/function/runtime/nodejs20.15/rtsp/nodejs/bin/node: path of the
Node.js compilation environment.

– $RUNTIME_CODE_ROOT: system variable that represents the /opt/
function/code path for storing project code in a container.

– index.js: project file created in 3. You can also define a custom name.
Table 2-4 lists the supported Node.js versions and the corresponding paths.

Table 2-4 Node.js paths

Language Path

Node.js 6 /opt/function/runtime/nodejs6.10/rtsp/nodejs/bin/node

Node.js 8 /opt/function/runtime/nodejs8.10/rtsp/nodejs/bin/node

Node.js 10 /opt/function/runtime/nodejs10.16/rtsp/nodejs/bin/node

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

https://www.koajs.com.cn/

Language Path

Node.js 12 /opt/function/runtime/nodejs12.13/rtsp/nodejs/bin/node

Node.js 14 /opt/function/runtime/nodejs14.18/rtsp/nodejs/bin/node

Node.js 16 /opt/function/runtime/nodejs16.17/rtsp/nodejs/bin/node

Node.js 18 /opt/function/runtime/nodejs18.15/rtsp/nodejs/bin/node

Node.js 20 /opt/function/runtime/nodejs20.15/rtsp/nodejs/bin/node

5. Compress all project files and the bootstrap file into a ZIP package. Ensure

that the project file is in the root directory after the decompression.

Figure 2-8 Packaging all files

6. Log in to the FunctionGraph console and click Create Function in the upper
right corner.

7. Create an HTTP function from scratch and upload the ZIP file to the Code tab.
After the function is created, you can use the Koa framework to develop
applications. The framework provides the infrastructure for processing
requests, and your custom application code defines the specific service logic.

Helpful Links
● For details about how to develop functions in Node.js, see Function

Development Overview.
● For details about how to use Node.js to develop an event function, see

Developing a Node.js Event Function.
● For details about how to create a Node.js function dependency, see Creating

a Dependency for a Node.js Function.
● For details about HTTP functions, see Creating an HTTP Function.
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

2.4 Node.js Function Template

Node.js Function
The following is the sample code template of a Node.js function:

exports.handler = async (event, context) => {
 const output =
 {
 'statusCode': 200,
 'headers':
 {
 'Content-Type': 'application/json'
 },

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1442.html

 'isBase64Encoded': false,
 'body': JSON.stringify(event),
 }
 return output;
}

When you create an empty Node.js event function on the FunctionGraph console,
the preceding sample code is deployed by default.

Helpful Links
● For details about how to use Node.js to develop an event function, see

Developing a Node.js Event Function.
● For details about how to use Node.js to develop an HTTP function, see

Developing an HTTP Function Using Node.js.
● For details about how to create a dependency package for a Node.js function,

see Creating a Dependency for a Node.js Function.
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

2.5 Creating a Dependency for a Node.js Function
You are advised to create function dependencies in Huawei Cloud EulerOS 2.0.
If other OSs are used, the dynamic link library may not be found due to the
differences between underlying dependency libraries.

Constraints
If the modules to be installed need dependencies such as .dll, .so, and .a, archive
them to a .zip package.

Setting Up the EulerOS Environment
You are advised to create function dependencies in EulerOS. EulerOS is an
enterprise-grade Linux OS based on open-source technology. It features high
security, scalability, and performance, meeting customers' requirements for IT
infrastructure and cloud computing services.

You can set up the Huawei Cloud EulerOS environment using the following
methods:

● Buy a EulerOS ECS on Huawei Cloud by referring to Purchasing and Logging
In to a Linux ECS. On the Configure Basic Settings page, select Public
Image, and select Huawei Cloud EulerOS and an image version.

● Download the EulerOS image, and use virtualization software to set up the
EulerOS VM on a local PC.

Creating a Dependency for a Node.js Function
Before creating a dependency, ensure that Node.js matching the function runtime
has been installed in the environment. The following uses Node.js 20.15 as an
example to describe how to create a MySQL dependency package.

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

https://support.huaweicloud.com/intl/en-us/productdesc-hce/hce_01_0001.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

Step 1 Run the following command to install the MySQL dependency package.
npm install mysql --save

The node_modules folder is generated under the current directory.

Step 2 Run the following command to generate the ZIP dependency package.
zip -rq mysql-node20.15.zip node_modules

----End

To package multiple dependencies, follow the steps below:

Step 1 Create a package.json file with the following content: Change the dependency
version as required.
{
 "name": "test",
 "version": "1.0.0",
 "dependencies": {
 "redis": "~2.8.0",
 "mysql": "~2.17.1"
 }
}

Step 2 Run the following command.
npm install --save

Step 3 Compress node_modules into a ZIP package. This generates a dependency that
contains both MySQL and Redis.
zip -rq mysql-node20.15.zip node_modules

----End

Helpful Links
● For details about how to use Node.js to develop an event function, see

Developing a Node.js Event Function.

● For details about how to use Node.js to develop an HTTP function, see
Developing an HTTP Function Using Node.js.

● For details about how to create a dependency package for a Node.js function,
see Creating a Dependency for a Node.js Function.

● For more information about function development, such as the supported
runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

2.6 Developing a Node.js Function Using Huawei Cloud
SDKs

Huawei Cloud API Explorer provides API reference documents and SDK code
examples for each cloud service.

This section uses the API for querying the function list as an example to describe
how to develop a Node.js function on the FunctionGraph console using Huawei
Cloud SDKs.

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

https://console-intl.huaweicloud.com/apiexplorer/#/openapi/FunctionGraph/sdk?api=InvokeFunction&locale=en-us

Step 1: Creating a Function Agency
1. Log in to the IAM console.
2. In the navigation pane on the left, choose Permissions > Policies/Roles. On

the displayed page, click Create Custom Policy in the upper right corner.
3. Take the agency to be created for the API used to query the function list as an

example. Configure a custom policy that contains the permission for querying
the function list, as shown in Figure 2-9, and click OK.
For more information about permissions, see Basic Concepts About
Permissions.

Figure 2-9 Custom policy for querying a function list

4. In the navigation pane of the IAM console, choose Agencies. Then, click
Create Agency in the upper right corner.

5. Configure agency parameters. After the parameters are configured, as shown
in Figure 2-10, click OK. The system displays a message indicating that the
creation is successful. Click Authorize.

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

https://console-intl.huaweicloud.com/iam/?locale=en-us
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0602.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0602.html

Figure 2-10 Entering basic information

6. On the displayed page, select the custom policy created in 3, click Next, select
the authorization scope based on the actual needs, and click OK.

Step 2: Creating a Node.js Function
1. Log in to the FunctionGraph console and click Create Function in the upper

right corner.
2. Create a Node.js event function from scratch, select the agency created in

Step 1: Creating a Function Agency, select the latest runtime version, and
click Create Function.

3. On the Code tab, scroll down to the Dependencies area and click Add.
4. Select Private for Type and click Create Dependency as shown in Figure

2-11. The dependency creation page is displayed.

Figure 2-11 Selecting dependencies

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

5. Create the required Node.js dependency for the function by referring to
Huawei Cloud Node.js SDK and Configuring a Dependency for a Function.
Note that the runtime version of the dependency must be the same as that of
the Node.js function.

6. After the dependency is created, return to 4 and add the created dependency.

Step 3: Obtaining SDK Sample Code from APIE

Step 1 Open API Explorer, select the required API, click the Sample Code tab, and select
the Node.js language, as shown in Figure 2-12.

Figure 2-12 APIE sample code

1. The API for querying functions is used as an example.
2. Enter the parameters required by the API. For details about the parameters,

see the corresponding section in the API reference. In this example, see
Querying Functions.

3. Copy the code generated by API Explorer and paste it in the code editing box
of the function created in Step 2: Creating a Node.js Function.

Step 2 You are advised to configure the AK/SK in the function environment variables. For
details, see Configuring Environment Variables. And you can use the
context.getUserData(string key) method to obtain the AK/SK in the code.

The modified code is as follows:

const core = require('@huaweicloud/huaweicloud-sdk-core');
const functiongraph = require("@huaweicloud/huaweicloud-sdk-functiongraph/v2/public-api");
exports.handler = async (event, context) => {
 const ak = context.getUserData("AK");
 const sk = context.getUserData("SK");
 const endpoint = "https://functiongraph.cn-north-4.myhuaweicloud.com";
 const project_id = "project_id";
 const credentials = new core.BasicCredentials()
 .withAk(ak)
 .withSk(sk)
 .withProjectId(project_id)
 const client = functiongraph.FunctionGraphClient.newBuilder()
 .withCredential(credentials)
 .withEndpoint(endpoint)
 .build();

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

https://console-intl.huaweicloud.com/apiexplorer/#/sdkcenter/FunctionGraph?lang=NodeJs&locale=en-us
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_2119.html#section2
https://console-intl.huaweicloud.com/apiexplorer/#/openapi/FunctionGraph/sdk?api=InvokeFunction
https://support.huaweicloud.com/intl/en-us/api-functiongraph/functiongraph_06_0105.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0154.html

 const request = new functiongraph.ListFunctionsRequest();
 request.marker = "marker";
 request.maxitems = "maxitems";
 request.packageName = "package_name";
 request.funcName = "func_name";
 const result = client.listFunctions(request);
 result.then(result => {
 console.log("JSON.stringify(result)::" + JSON.stringify(result));
 }).catch(ex => {
 console.log("exception:" + JSON.stringify(ex));
 });
 const output =
 {
 'statusCode': 200,
 'headers':
 {
 'Content-Type': 'application/json'
 },
 'isBase64Encoded': false,
 'body': JSON.stringify(event),
 }
 return output;
}

Step 3 (Optional) To use a more secure authentication mode, replace the following code:
const ak = context.getUserData("AK");
const sk = context.getUserData("SK");
const credentials = new core.BasicCredentials()
 .withAk(ak)
 .withSk(sk)
 .withProjectId(project_id)

with

const ak = context.getSecurityAccessKey();
const sk = context.getSecuritySecretKey();
const st = context.getSecurityToken();
const credentials = new core.BasicCredentials()
 .withAk(ak)
 .withSk(sk)
 .withProjectId(project_id)
 .with_security_token(st)

----End

FunctionGraph
Developer Guide 2 Node.js

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

3 Python

3.1 Function Development Overview
FunctionGraph supports the following Python runtimes:

● Python 2.7
● Python 3.6
● Python 3.9
● Python 3.10
● Python 3.12

Function Syntax

Use the following syntax when creating a handler function in Python:

def handler (event, context)

● handler: name of the function that FunctionGraph invokes to execute your
code. The name must be consistent with that you define when creating a
function.

● event: event parameter defined for the function. The parameter is in JSON
format.

● Context: runtime information provided for executing the function. For details,
see SDK APIs.

The Python function handler is in the format of [File name].[Function name]. You
can configure the handler on the FunctionGraph console.

Python Initializer

For details about the initializer, see Initializer.

The initializer is in the format of [File name].[Initializer name].

For example, if the initializer is named main.my_initializer, FunctionGraph loads
the my_initializer function defined in the main.py file.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

To use Python to build initialization logic, define a Python function as the
initializer. The following is a simple initializer (Python 3.12 is used as an example):

def my_initializer(context):
 print('hello world!')

● Function name
The function name my_initializer must be the initializer function name
specified for a function. For example, if the initializer is named
main.my_initializer, FunctionGraph loads the my_initializer function defined
in the main.py file.

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

Non-standard Libraries Integrated with the Python Runtime
Table 3-1 lists the non-standard libraries integrated with Python, which can be
directly declared and used in Python function code.

Table 3-1 Non-standard libraries integrated with Python

Library Usage Version

dateutil Date and time processing 2.6.0

requests HTTP library 2.7.0

httplib2 httpclient 0.10.3

numpy Mathematical computation 1.13.1

redis Redis client 2.10.5

obsclient OBS client -

smnsdk SMN access 1.0.1

SDK APIs
Table 3-2 describes the context methods provided by FunctionGraph.

Table 3-2 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeI
nMilliSeconds ()

Obtains the remaining running time of a function.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Method Description

getAccessKey() Obtains the AK (valid for 24 hours) with an agency. If you
use this method, you need to configure an agency for the
function.
FunctionGraph has stopped maintaining the
getAccessKey API in the Runtime SDK. You cannot use
this API to obtain a temporary AK.

getSecretKey() Obtains the SK (valid for 24 hours) with an agency. If you
use this method, you need to configure an agency for the
function.
FunctionGraph has stopped maintaining the
getSecretKey API in the Runtime SDK. You cannot use
this API to obtain a temporary SK.

getSecurityAcces-
sKey()

Obtains the SecurityAccessKey (valid for 24 hours) with an
agency. The cache duration is 10 minutes. That is, the
same content is returned within 10 minutes. To use this
method, you need to configure an agency for the function.

getSecuritySecret-
Key()

Obtains the SecuritySecretKey (valid for 24 hours) with an
agency. The cache duration is 10 minutes. That is, the
same content is returned within 10 minutes. To use this
method, you need to configure an agency for the function.

getSecurityToken() Obtains the SecurityToken (valid for 24 hours) with an
agency. The cache duration is 10 minutes. That is, the
same content is returned within 10 minutes. To use this
method, you need to configure an agency for the function.

getUserData(string
key)

Uses keys to obtain the values passed by environment
variables.

getFunctionName(
)

Obtains the name of a function.

getRunningTimeIn-
Seconds ()

Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() Obtains CPU usage of a function.

getPackage() Obtains a function group.

getToken() Obtains the token (valid for 24 hours) with an agency. If
you use this method, you need to configure an agency for
the function.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Method Description

getLogger() Obtains the logger method provided by the context and
returns a log output class. Logs are output in the format
of Time-Request ID-Content by using the info method.
For example, use the info method to output logs:
log = context.getLogger()
log.info("test")

getAlias() Obtains function alias.

As shown in Figure 3-1, you can use the context class in the code editor on the
FunctionGraph console.

Figure 3-1 Using the context class

Helpful Links
● For details about how to use Python to develop an event function, see

Developing a Python Event Function.
● For details about how to create a dependency for a Python function, see

Creating a Dependency for a Python Function.
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

3.2 Developing a Python Event Function
You can develop a Python event function locally and upload the code file, or
create a function on the FunctionGraph console and edit code online.

For details about the syntax and SDK APIs of Python functions, see Function
Development Overview.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Constraints
● FunctionGraph can return only the following types of values:

– None: The HTTP response body is empty.
– String: The content in this string is the body of an HTTP response.
– Other: For a value rather than None or String, FunctionGraph encodes

the value in JSON, and uses the encoded object as the body of an HTTP
response. The Content-Type header of the HTTP response is set to
application/json.

● When calling a function using APIG, isBase64Encoded is valued true by
default, indicating that the request body transferred to FunctionGraph is
encoded using Base64 and must be decoded for processing.
The function must return characters strings by using the following structure.
{
 "isBase64Encoded": true|false,
 "statusCode": httpStatusCode,
 "headers": {"headerName":"headerValue",...},
 "body": "..."
}

● When you write code in Python, do not name your package with the same
suffix as a standard Python library, such as json, lib, and os. Otherwise, an
error will be reported indicating a module loading failure.

Step 1: Creating a Python Function Project
1. Write code for printing text helloworld.

Open the text editor, compile a HelloWorld function, and save the code file as
helloworld.py. The code is as follows:
def print hello():
 print('Hello world!')

2. Define a FunctionGraph function.
Open the text editor, write the function code, and save the function file as
index.py under the same directory as the helloworld.py file. The function
code is as follows:
-*- coding:utf-8 -*-
import json
import helloworld

def handler (event, context):
 output =json.dumps(event)
 helloworld.printhello()
 return output

3. Package the project files.
After creating the function project, you get the following directory. Select all
files under the directory and package them into the
fss_examples_python3.zip file, as shown in Figure 3-2. Ensure that the
function handler is under the root directory after the ZIP file is decompressed.
You can also download the Python function sample project package and
use it directly.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Figure 3-2 Packaging the project files

Step 2: Creating a Function
1. Log in to the FunctionGraph console and click Create Function in the upper

right corner.
2. Create a Python event function from scratch and click Create Now as shown

inFigure 3-3. The function details page is displayed.

Figure 3-3 Creating a Python function

3. Upload the ZIP file packed in Step 1: Creating a Python Function Project on
the Code tab, as shown in Figure 3-4.
The uploaded code will be automatically deployed on the FunctionGraph
console. If you have modified the code, click Deploy again.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

Figure 3-4 Uploading a ZIP file

NO TE

Modifying the function handler:
In the navigation pane on the left of the FunctionGraph console, choose Functions >
Function List. Click the name of the function to be set. On the function details page
that is displayed, choose Configuration > Basic Settings and set the Handler
parameter, as shown in Figure 3-5.

Figure 3-5 Function handler

● The index of the handler must be consistent with the name of the file created in
Step 1: Creating a Python Function Project, because the file name will help to
locate the function file.

● The handler is a function name. It is used to find the handler of the function.

After you upload the fss_examples_python3.zip file to OBS, when the function is
triggered, FunctionGraph decompresses the file to locate the function file through
index and locate the function defined in the index.py file through handler, and then
executes the function.

Step 3: Testing the Function
1. On the Code tab, click Test. In the displayed Configure Test Event dialog box,

select Blank Template. Configure the test event test as shown in Figure 3-6.
Click Create.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Figure 3-6 Configuring a test event

2. Select the configured test event test and click Test.
3. As shown in Figure 3-7, the Execution Result window is displayed on the

right. You can check whether the function is executed successfully.

Figure 3-7 Test result

Function Execution Result
The execution result consists of the function output, summary, and log output.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Table 3-3 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage, errorType, and
stackTrace is returned. The format is
as follows:
{
 "errorMessage": "",
 "errorType": "",
 "stackTrace": []
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.
stackTrace: Stack error information
returned by the runtime.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

Helpful Links
● For details about how to create a Python function dependency, see Creating

a Dependency for a Python Function.

● For more information about function development, such as the supported
runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

3.3 Creating an Event Function Using a Container
Image Built with Python

For details about how to use a container image to create and execute an event
function, see Creating an Event Function Using a Container Image and
Executing the Function. This section describes how to create an image using
Python and verify the image locally.

Step 1: Creating an Image

Take the Linux x86 64-bit OS as an example. (There are no specific requirements
for system configurations.)

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html

1. Run the following command to create an empty folder named
custom_container_event_example:
mkdir custom_container_event_example && cd custom_container_event_example

2. Use Python to implement an HTTP server to process init and invoke requests
and send responses.
Run the following command to create a main.py file:
touch main.py

Introduce the Flask framework in the code and implement a function handler
(method POST and path /invoke) and an initializer (method POST and path /
init). Here is the code for main.py:
import json

from flask import Flask, request

Create a Flask application instance.
app = Flask(__name__, template_folder='templates', static_folder='static')

Define the initialization API.
@app.route('/init', methods=['POST'])
def init():
 # Print the request path for debugging.
 print("***" + request.path + "***", flush=True)

 # Build response data.
 data = {
 "statusCode": 200,
 "isBase64Encoded": False,
 "body": json.dumps("init successes"),
 "headers": {
 "Content-Type": "application/json"
 }
 }
 return json.dumps(data)

Define the API.
@app.route('/invoke', methods=['POST'])
def invoke():
 print("***" + request.path + "***", flush=True)
 data = {
 "statusCode": 200,
 "isBase64Encoded": False,
 "body": json.dumps("invoke successes"),
 "headers": {
 "Content-Type": "application/json"
 }
 }
 return json.dumps(data)

Main program entry
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8000)

3. Create a Dockerfile.
touch Dockerfile

The content of Dockerfile is as follows:
FROM ubuntu:22.04

ENV HOME=/home/custom_container
ENV GROUP_ID=1003
ENV GROUP_NAME=custom_container
ENV USER_ID=1003
ENV USER_NAME=custom_container

RUN mkdir -m 550 ${HOME} && groupadd -g ${GROUP_ID} ${GROUP_NAME} && useradd -u $
{USER_ID} -g ${GROUP_ID} ${USER_NAME}

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

RUN apt-get update && \
 apt-get install -y --no-install-recommends python3 pip && \
 apt-get clean

RUN pip3 install --verbose flask jsons requests --no-cache-dir

COPY main.py ${HOME}

RUN chown -R ${USER_ID}:${GROUP_ID} ${HOME}
RUN chmod -R 775 ${HOME}

USER ${USER_NAME}
WORKDIR ${HOME}
EXPOSE 8000
ENTRYPOINT ["python3", "main.py"]

Table 3-4 Instructions

Instruct
ion

Description

FROM Specifies base image ubuntu:22.04. The base image is
mandatory and its value can be changed.

ENV Sets environment variables HOME (/home/custom_container),
GROUP_NAME and USER_NAME (custom_container), and
USER_ID and GROUP_ID (1003). These environment variables
are mandatory and their values can be changed.

RUN Executes commands. The format is RUN <command>. For
example, RUN mkdir -m 550 ${HOME} means to create
directory ${HOME} for user ${USER_NAME} during container
building.

COPY Copies files or directories from the build context to the image.
Copy main.py to the ${HOME} directory of user ${USER_NAME}
in the container.

USER Switches to user ${USER_NAME}.

WORKDI
R

Switches the working directory to the ${HOME} directory of user
${USER_NAME}.

EXPOSE Informs Docker that the container listens on the specified
network ports at runtime. Expose port 8000 of the container and
do not change it.

ENTRYP
OINT

Sets the executable command that is run each time a container
starts. Run the python3 main.py command to start a container.

4. Run the following command to build an image:
docker build -t custom_container_event_example:latest .

In the preceding command, the image name is
custom_container_event_example, the tag is latest, and the period (.)
indicates the directory where the Dockerfile is located. Run the image build
command to pack all files in the directory and send the package to a
container engine to build an image.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Step 2: Performing Local Verification
1. Run the following command to start the Docker container:

docker run -u 1003:1003 -p 8000:8000 custom_container_event_example:latest

2. Open a new Command Prompt, and send a message through port 8000 to
access the /init directory specified in the template code.
curl -XPOST -H 'Content-Type: application/json' localhost:8000/init

The following information is returned based on the module code:
{
 "statusCode": 200,
 "isBase64Encoded": False,
 "body": json.dumps("init successes"),
 "headers": {
 "Content-Type": "application/json"
 }
}

3. Open a new Command Prompt, and send a message through port 8000 to
access the /invoke directory specified in the template code.
curl -XPOST -H 'Content-Type: application/json' -d '{"message":"HelloWorld"}' localhost:8000/invoke

The following information is returned based on the module code:
{
 "statusCode": 200,
 "isBase64Encoded": False,
 "body": json.dumps("invoke successes"),
 "headers": {
 "Content-Type": "application/json"
 }
}

Step 3: Creating a Function

Once you build the container image locally, you can create a function on the
console.

For details, see Creating an Event Function Using a Container Image and
Executing the Function. Start from Step 3: Upload the Image.

Helpful Links
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

● For details about the syntax and SDK APIs of function development in Python,
see Function Development Overview.

3.4 Creating an HTTP Function Using a Container
Image Built with Python

For details about how to use a container image to create and execute an HTTP
function, see Creating an HTTP Function Using a Container Image and
Executing the Function. This section describes how to create an image using
Python and verify the image locally.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html#section4
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html#section4
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html

Step 1: Creating an Image
Take the Linux x86 64-bit OS as an example. (There are no specific requirements
for system configurations.)

1. Run the following command to create a folder:
mkdir custom_container_http_example && cd custom_container_http_example

2. Use Python to implement an HTTP server to process HTTP requests and send
responses.
Run the following command to create a main.py file:
touch main.py

Introduce the Flask framework in the code and implement a function handler
index (method POST). The handler can be compiled based on the actual
service requirements. Here is the code for main.py:
import json

from flask import Flask, request

Create a Flask application instance.
app = Flask(__name__, template_folder='templates', static_folder='static')

Define a route /index that handles POST requests.
@app.route('/index', methods=['POST'])
def index():
 # Print the request path for debugging.
 print("***" + request.path + "***", flush=True)

 # Build response data.
 data = {
 "statusCode": 200,
 "isBase64Encoded": False,
 "body": json.dumps(request.path + " success"),
 "headers": {
 "Content-Type": "application/json"
 }
 }
 return json.dumps(data)

Main program entry
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8000)

3. Create a Dockerfile with the following content:
FROM ubuntu:22.04

ENV HOME=/home/custom_container
ENV GROUP_ID=1003
ENV GROUP_NAME=custom_container
ENV USER_ID=1003
ENV USER_NAME=custom_container

RUN mkdir -m 550 ${HOME} && groupadd -g ${GROUP_ID} ${GROUP_NAME} && useradd -u $
{USER_ID} -g ${GROUP_ID} ${USER_NAME}

RUN apt-get update && \
 apt-get install -y --no-install-recommends python3 pip && \
 apt-get clean

RUN pip3 install --verbose flask jsons requests --no-cache-dir

COPY main.py ${HOME}

RUN chown -R ${USER_ID}:${GROUP_ID} ${HOME}
RUN chmod -R 775 ${HOME}

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

USER ${USER_NAME}
WORKDIR ${HOME}
EXPOSE 8000
ENTRYPOINT ["python3", "main.py"]

Table 3-5 Instructions

Instruct
ion

Description

FROM Specifies base image ubuntu:22.04. The base image is
mandatory and its value can be changed.

ENV Sets environment variables HOME (/home/custom_container),
GROUP_NAME and USER_NAME (custom_container), and
USER_ID and GROUP_ID (1003). These environment variables
are mandatory and their values can be changed.

RUN Executes commands. The format is RUN <command>. For
example, RUN mkdir -m 550 ${HOME} means to create
directory ${HOME} for user ${USER_NAME} during container
building.

COPY Copies files or directories from the build context to the image.
Copy main.py to the ${HOME} directory of user ${USER_NAME}
in the container.

USER Switches to user ${USER_NAME}.

WORKDI
R

Switches the working directory to the ${HOME} directory of user
${USER_NAME}.

EXPOSE Informs Docker that the container listens on the specified
network ports at runtime. Expose port 8000 of the container and
do not change it.

ENTRYP
OINT

Sets the executable command that is run each time a container
starts. Run the python3 main.py command to start a container.

4. Run the following command to build an image:

docker build -t custom_container_http_example:latest .

In the preceding command, the image name is
custom_container_http_example, the tag is latest, and the period (.)
indicates the directory where the Dockerfile is located. Run the image build
command to pack all files in the directory and send the package to a
container engine to build an image.

Step 2: Performing Local Verification
1. Run the following command to start the Docker container:

docker run -u 1003:1003 -p 8000:8000 custom_container_http_example:latest

2. Open a new Command Prompt, and send a message through port 8000 to
access the /init directory specified in the template code.
curl -XPOST -H 'Content-Type: application/json' localhost:8000/index

The following information is returned based on the module code:
index successes

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Step 3: Creating a Function

Once you build the container image locally, you can create a function on the
console.

For details, see Creating an HTTP Function Using a Container Image and
Executing the Function. Start from Step 3: Upload the Image.

Helpful Links
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

● For details about the syntax and SDK APIs of function development in Python,
see Function Development Overview.

3.5 Python Function Template

Python Function

The following is a sample code template of a Python function:

-*- coding:utf-8 -*-
import json
def handler (event, context):
 return {
 "statusCode": 200,
 "isBase64Encoded": False,
 "body": json.dumps(event),
 "headers": {
 "Content-Type": "application/json"
 }
 }

When you create an empty Python event function on the FunctionGraph console,
the preceding sample code is deployed by default.

3.6 Creating a Dependency for a Python Function
You are advised to create function dependencies in Huawei Cloud EulerOS 2.0.
If other OSs are used, the dynamic link library may not be found due to the
differences between underlying dependency libraries.

Constraints

If the modules to be installed need dependencies such as .dll, .so, and .a, archive
them to a .zip package.

Setting Up the EulerOS Environment

You are advised to create function dependencies in EulerOS. EulerOS is an
enterprise-grade Linux OS based on open-source technology. It features high
security, scalability, and performance, meeting customers' requirements for IT
infrastructure and cloud computing services.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html#section4
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html#section4

You can set up the Huawei Cloud EulerOS environment using the following
methods:

● Buy a EulerOS ECS on Huawei Cloud by referring to Purchasing and Logging
In to a Linux ECS. On the Configure Basic Settings page, select Public
Image, and select Huawei Cloud EulerOS and an image version.

● Download the EulerOS image, and use virtualization software to set up the
EulerOS VM on a local PC.

Creating a Dependency for a Python Function
Before creating a dependency, ensure that Python matching the function runtime
has been installed in the environment.

The following uses Python 3.12 as an example to describe how to create a
PyMySQL dependency.

Step 1 Run the following command to install the PyMySQL dependency to the
local /tmp/pymysql directory.
pip install PyMySQL --root /tmp/pymysql

Step 2 Run the following command to access the specified directory.
cd /tmp/pymysql/

Step 3 Go to the site-packages directory (generally lib/python3.12/site-packages/). If
no dependency file exists in this directory, run the find command to find the file
and go to its directory. Then run the following command to compress the
dependency file.

The required dependency is generated.

zip -rq pymysql.zip *

----End

NO TE

To install the local wheel installation package, run the following commands:
pip install piexif-1.1.0b0-py2.py3-none-any.whl --root /tmp/piexif
//Replace piexif-1.1.0b0-py2.py3-none-any.whl with the actual installation package name.

Helpful Links
● For details about how to use Python to develop an event function, see

Developing a Python Event Function.
● For details about how to create a Python function dependency, see Creating

a Dependency for a Python Function.
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

https://support.huaweicloud.com/intl/en-us/productdesc-hce/hce_01_0001.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

3.7 Developing a Python Function Using the Huawei
Cloud SDK

Huawei Cloud API Explorer provides API reference documents and SDK code
examples for each cloud service.

This section uses the API for querying the function list as an example to describe
how to develop a Python function on the FunctionGraph console using Huawei
Cloud SDKs.

Step 1: Creating a Function Agency
1. Log in to the IAM console.
2. In the navigation pane on the left, choose Permissions > Policies/Roles. On

the displayed page, click Create Custom Policy in the upper right corner.
3. Take the agency to be created for the API used to query the function list as an

example. Configure a custom policy that contains the permission for querying
the function list, as shown in Figure 3-8, and click OK.
For more information about permissions, see Basic Concepts About
Permissions.

Figure 3-8 Custom policy for querying a function list

4. In the navigation pane of the IAM console, choose Agencies. Then, click
Create Agency in the upper right corner.

5. Configure agency parameters. After the parameters are configured, as shown
in Figure 3-9, click OK. The system displays a message indicating that the
creation is successful. Click Authorize.

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

https://console-intl.huaweicloud.com/apiexplorer/#/openapi/FunctionGraph/sdk?api=InvokeFunction&locale=en-us
https://console-intl.huaweicloud.com/iam/?locale=en-us
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0602.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0602.html

Figure 3-9 Entering basic information

6. On the displayed page, select the custom policy created in 3, click Next, select
the authorization scope based on the actual needs, and click OK.

Step 2: Creating a Python Function
1. Log in to the FunctionGraph console and click Create Function in the upper

right corner.
2. Create a Python event function from scratch, select the agency created in

Step 1: Creating a Function Agency, select the latest runtime version, and
click Create Function.

3. On the Code tab, scroll down to the Dependencies area and click Add.
4. Select Private for Type and click Create Dependency as shown in Figure

3-10. The dependency creation page is displayed.

Figure 3-10 Selecting dependencies

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

5. Create the required Node.js dependency for the function by referring to
Huawei Cloud Python SDK and Creating a Dependency.
Note that the runtime version of the dependency must be the same as that of
the Python function.

6. After the dependency is created, return to 4 and add the created dependency.

Step 3: Obtaining SDK Sample Code from APIE

Step 1 Open API Explorer, select the required API, click the Sample Code tab, and select
the Python language, as shown in Figure 3-11.

Figure 3-11 APIE sample code

1. The API for querying functions is used as an example.
2. Enter the parameters required by the API. For details about the parameters,

see the corresponding section in the API reference. In this example, see
Querying Functions.

3. Copy the code generated by API Explorer and paste it in the code editing box
of the function created in Step 2: Creating a Python Function.

Step 2 You are advised to configure the AK/SK in the function environment variables. For
details, see Configuring Environment Variables. And you can use the
context.getUserData(string key) method to obtain the AK/SK in the code.

The modified code is as follows:

-*- coding:utf-8 -*-
import json
import os
from huaweicloudsdkcore.auth.credentials import BasicCredentials
from huaweicloudsdkfunctiongraph.v2.region.functiongraph_region import FunctionGraphRegion
from huaweicloudsdkcore.exceptions import exceptions
from huaweicloudsdkfunctiongraph.v2 import *
def handler (event, context):
 ak = context.getUserData("AK")
 sk = context.getUserData("SK")
 projectId = "project_id"
 credentials = BasicCredentials(ak, sk, projectId)
 client = FunctionGraphClient.new_builder() \
 .with_credentials(credentials) \
 .with_region(FunctionGraphRegion.value_of("cn-north-4")) \
 .build()

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

https://console-intl.huaweicloud.com/apiexplorer/#/sdkcenter/FunctionGraph?lang=Python&locale=en-us
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_2119.html#section2
https://console-intl.huaweicloud.com/apiexplorer/#/openapi/FunctionGraph/sdk?api=InvokeFunction
https://support.huaweicloud.com/intl/en-us/api-functiongraph/functiongraph_06_0105.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0154.html

 try:
 request = ListFunctionsRequest()
 request.marker = "marker"
 request.maxitems = "maxitems"
 request.package_name = "package_name"
 request.func_name = "func_name"
 response = client.list_functions(request)
 print(response)
 except exceptions.ClientRequestException as e:
 print(e.status_code)
 print(e.request_id)
 print(e.error_code)
 print(e.error_msg)
 return {
 "statusCode": 200,
 "isBase64Encoded": False,
 "body": json.dumps(event),
 "headers": {
 "Content-Type": "application/json"
 }
 }

Step 3 (Optional) To use a more secure authentication mode, replace the following code:
ak = context.getUserData("AK")
sk = context.getUserData("SK")
credentials = BasicCredentials(ak, sk, projectId)

with

ak = context.getSecurityAccessKey()
sk = context.getSecuritySecretKey()
st = context.getSecurityToken()
credentials = BasicCredentials(ak, sk, projectId).with_security_token(st)

----End

FunctionGraph
Developer Guide 3 Python

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

4 Java

4.1 Function Development Overview
FunctionGraph supports the following Java runtimes:

● Java 8
● Java 11
● Java 17
● Java 21 (only available in ME-Riyadh and TR-Istanbul)

Function Syntax
Java function syntax: Scope Return parameter Function name (User-defined
parameter, Context)

● Scope: It must be defined as public for the function that FunctionGraph
invokes to execute your code.

● Return parameter: user-defined output, which is converted into a character
string and returned as an HTTP response. The HTTP response is a JSON string.

● Function name: user-defined function name.
● User-defined parameter: FunctionGraph supports only one user-defined

parameter. For complex parameters, define them as an object and provide
data through JSON strings. When invoking a function, FunctionGraph parses
the JSON strings as an object.

● Context: runtime information provided for executing the function. For details,
see SDK APIs.

The Java function handler is in the format of [package name].[class name].
[function name]. Configure or modify handler parameters by referring to function
handler.

Java Initializer
For details about the initializer, see Initializer.

Initializer format: [Package name].[Class name].[Execution function name]

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

For example, if the initializer is named com.huawei.Demo.my_initializer,
FunctionGraph loads the my_initializer function defined in the com.huawei file.

To use Java to build initialization logic, define a Java function as the initializer. The
following is a simple initializer:

public void my_initializer(Context context)
{
RuntimeLogger log = context.getLogger();
log.log(String.format("ak:%s", context.getAccessKey()));
}

● Function name

The function name my_initializer must be the initializer function name
specified for a function.

● context

The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

SDK APIs

The Java SDK (verification file: fss-java-sdk-2.0.5.sha256) provides context, event,
and logging APIs.

● Event APIs

Event structure definitions are added to the Java SDK. Currently, DMS, DIS,
SMN, timer, APIG, and Kafka triggers are supported. The definitions make
coding much simpler when triggers are required.

a. APIG trigger

▪ APIGTriggerEvent methods

Table 4-1 APIGTriggerEvent methods

Method Description

isBase64Encoded() Checks whether the body of an
event is encoded using Base64.

getHttpMethod() Obtains the HTTP request
method.

getPath() Obtains the HTTP request path.

getBody() Obtains the HTTP request body.

getPathParameters() Obtains all path parameters.

getRequestContext() Obtains APIG configuration
information. (The
APIGRequestContext object is
returned.)

getHeaders() Obtains the HTTP request
header.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/java/fss-java-sdk-2.0.5.zip
https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/java/fss-java-sdk-2.0.5.sha256

Method Description

getQueryStringParameters() Obtains query parameters.
The value of a query
parameter cannot be an array.
To support an array, customize
the corresponding event
structure.

getRawBody() Obtains the content before
Base64 encoding.

getUserData() Obtains the user data set in the
APIG custom authorizer.

Table 4-2 APIGRequestContext methods

Method Description

getApiId() Obtains the API ID.

getRequestId() Obtains the request ID of an API
request.

getStage() Obtains the name of the
environment in which an API
has been published.

getSourceIp() Obtains the source IP address in
the APIG custom authorizer.

▪ APIGTriggerResponse methods

Table 4-3 APIGTriggerResponse construction methods

Method Description

APIGTriggerResponse() Set the following parameters:
headers: null statusCode: 200
body: "" isBase64Encoded:
false

APIGTriggerResponse(statusCod
e, headers, body)

Set the value of
isBase64Encoded to false, and
use the input values of other
parameters.

APIGTriggerResponse(statusCod
e, headers, isBase64Encoded,
body)

Set the parameters in sequence.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Table 4-4 APIGTriggerResponse methods

Method Description

setBody(String body) Sets the message body.

setHeaders(Map<String,String>
headers)

Sets the HTTP response header
to be returned.

setStatusCode(int statusCode) Sets the HTTP status code.

setBase64Encoded(boolean
isBase64Encoded)

Configures Base64 encoding for
the response body.

setBase64EncodedBody(String
body)

Encodes the input with Base64
and configures it in the body.

addHeader(String key, String
value)

Adds a group of HTTP headers.

removeHeader(String key) Removes the specified header.

addHeaders(Map<String,String>
headers)

Adds multiple headers.

NO TE

APIGTriggerResponse methods have the headers attribute, which can be
initialized using the setHeaders method or a constructor function with the
headers parameter.

b. DIS trigger

Table 4-5 DISTriggerEvent methods

Method Description

getShardID() Obtains the partition ID.

getMessage() Obtains the DIS message body
(DISMessage structure).

getTag() Obtains the version of a function.

getStreamName() Obtains the stream name.

Table 4-6 DISMessage methods

Method Description

getNextPatitionCursor() Obtains the next partition cursor.

getRecords() Obtains message records
(DISRecord structure).

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Method Description

getMillisBehindLatest() Reserved (Currently, 0 is
returned.)

Table 4-7 DISRecord methods

Method Description

getPartitionKey() Obtains the data partition.

getData() Obtains data.

getRawData() Obtains UTF-8 data strings
decoded using Base64.

getSequenceNumber() Obtains the sequence number (ID
of each record).

c. DMS trigger

Table 4-8 DMSTriggerEvent methods

Method Description

getQueueId() Obtains the queue ID.

getRegion() Obtains the region name.

getEventType() Obtains the event type.
("MessageCreated" is returned.)

getConsumerGroupId() Obtains the consumer group ID.

getMessages() Obtains DMS messages
(DMSMessage structure).

Table 4-9 DMSMessage methods

Method Description

getBody() Obtains the DMS message body.

getAttributes() Obtains the message attribute set.

d. SMN trigger

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Table 4-10 SMNTriggerEvent method

Method Description

getRecord() Obtains the message records
(SMNRecord structure).

Table 4-11 SMNRecord methods

Method Description

getEventVersion() Obtains event version. (The
current version is 1.0.)

getEventSubscriptionUrn() Obtains the subscription Uniform
Resource Name (URN).

getEventSource() Obtains the event source.

getSmn() Obtains the message body
(SMNBody structure).

Table 4-12 SMNBody methods

Method Description

getTopicUrn() Obtains the topic URN.

getTimeStamp() Obtains the timestamp of a
message.

getMessageAtrributes() Obtains the message attribute set.

getMessage() Obtains the message body.

getType() Obtains the message type.

getMessageId() Obtains the message ID.

getSubject() Obtains the message topic.

e. Timer trigger

Table 4-13 TimerTriggerEvent methods

Method Description

getVersion() Obtains the version name. (The
current version is 1.0.)

getTime() Obtains the current time.

getTriggerType() Obtains trigger type (Timer).

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Method Description

getTriggerName() Obtains the trigger name.

getUserEvent() Obtains the additional
information of the trigger.

f. Kafka trigger

Table 4-14 Kafka trigger

Method Description

getEventVersion Obtains event version.

getRegion Obtains region information.

getEventTime Obtains event time.

getTriggerType Obtains trigger type

getInstanceId Obtains the instance ID.

getRecords Obtains record.

NO TE

1. When using an APIG trigger, set the first parameter of the handler function (for
example, handler) to handler(APIGTriggerEvent event, Context context).

2. The preceding TriggerEvent methods have corresponding set methods, which are
recommended for local debugging. DIS and LTS triggers have getRawData()
methods, but do not have setRawData() methods.

● Context APIs
The context APIs are used to obtain the context, such as agency AK/SK,
current request ID, allocated memory space, and number of CPUs, required for
executing a function.
Table 4-15 describes the context APIs provided by FunctionGraph.

Table 4-15 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeIn-
MilliSeconds ()

Obtains the remaining running time of a
function.

getAccessKey() Obtains the AK (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.
FunctionGraph has stopped maintaining the
getAccessKey API in the Runtime SDK. You
cannot use this API to obtain a temporary AK.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

Method Description

getSecretKey() Obtains the SK (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.
FunctionGraph has stopped maintaining the
getSecretKey API in the Runtime SDK. You
cannot use this API to obtain a temporary SK.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid for 24
hours) with an agency. The cache duration is 10
minutes. That is, the same content is returned
within 10 minutes. To use this method, you need
to configure an agency for the function.

getSecuritySecretKey() Obtains the SecuritySecretKey (valid for 24
hours) with an agency. The cache duration is 10
minutes. That is, the same content is returned
within 10 minutes. To use this method, you need
to configure an agency for the function.

getSecurityToken() Obtains the SecurityToken (valid for 24 hours)
with an agency. The cache duration is 10
minutes. That is, the same content is returned
within 10 minutes. To use this method, you need
to configure an agency for the function.

getUserData(string key) Uses keys to obtain the values passed by
environment variables.

getFunctionName() Obtains the name of a function.

getRunningTimeInSec-
onds ()

Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() Obtains CPU usage of a function.

getPackage() Obtains a function group.

getToken() Obtains the token (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.

getLogger() Obtains the logger method provided by the
context. By default, information such as the time
and request ID is output.

getAlias() Obtains function alias.

● Logging APIs

Table 4-16 describes the logging API provided in the Java SDK.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Table 4-16 Logging API

Method Description

RuntimeLogger() Records user input logs. Method:
log(String string).

4.2 Developing a Java Event Function

4.2.1 Developing Functions in Java (Using IDEA to Create a
Java Project)

This section describes how to use IDEA to develop Java functions. For details about
the Java syntax, initializer and SDK APIs, see Function Development Overview.

Procedure
You can create a Java project and Java function following the steps in this section,
or download the sample project package and start from Step 3: Creating and
Testing a Java Function.

Step 1: Creating a Java Project Using IDEA
1. Configure the IDEA.

Create a Java project, as shown in Figure 4-1.

Figure 4-1 Creating a project

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

2. Add dependencies to the project.
Download the Java SDK to a local development environment, and
decompress the SDK package, as shown in Figure 4-2.

Figure 4-2 Decompressing the downloaded SDK

3. Configure dependencies.
Create a folder named lib in the project directory, copy the Runtime2.0.5.jar
file and other required dependencies to the lib folder, and add the JAR files as
the dependencies of the project, as shown in Figure 4-3.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/java/fss-java-sdk-2.0.5.zip

Figure 4-3 Configuring dependencies

4. Configure the function resources.
Create a package named com.huawei.demo, and then create a class named
TriggerTests under the package, as shown in Figure 4-4.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

Figure 4-4 Creating the TriggerTests class

5. Configure the function code.
Define the function handler in TriggerTests.java as shown in Figure 4-5. The
sample code is as follows: A common Java project needs to be compiled
using artifacts, and a main function needs to be defined.
package com.huawei.demo;

import java.io.UnsupportedEncodingException;
import java.util.HashMap;
import java.util.Map;

import com.huawei.services.runtime.Context;
import com.huawei.services.runtime.entity.apig.APIGTriggerEvent;
import com.huawei.services.runtime.entity.apig.APIGTriggerResponse;
import com.huawei.services.runtime.entity.dis.DISTriggerEvent;
import com.huawei.services.runtime.entity.dms.DMSTriggerEvent;
import com.huawei.services.runtime.entity.lts.LTSTriggerEvent;
import com.huawei.services.runtime.entity.smn.SMNTriggerEvent;
import com.huawei.services.runtime.entity.timer.TimerTriggerEvent;
import com.huawei.services.runtime.entity.eventgrid.EventGridTriggerEvent;

public class TriggerTests {
 public static void main(String args[]) {}
 public APIGTriggerResponse apigTest(APIGTriggerEvent event, Context context){
 System.out.println(event);
 Map<String, String> headers = new HashMap<String, String>();
 headers.put("Content-Type", "application/json");
 return new APIGTriggerResponse(200, headers, event.toString());
 }

 public String smnTest(SMNTriggerEvent event, Context context){
 System.out.println(event);
 return "ok";
 }

 public String dmsTest(DMSTriggerEvent event, Context context){
 System.out.println(event);
 return "ok";
 }

 public String timerTest(TimerTriggerEvent event, Context context){
 System.out.println(event);
 return "ok";
 }

 public String disTest(DISTriggerEvent event, Context context) throws
UnsupportedEncodingException{
 System.out.println(event);
 System.out.println(event.getMessage().getRecords()[0].getRawData());

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

 return "ok";
 }

 public String ltsTest(LTSTriggerEvent event, Context context) throws
UnsupportedEncodingException {
 System.out.println(event);
 event.getLts().getData();
 System.out.println("raw data: " + event.getLts().getRawData());
 return "ok";
 }

 public String eventgridTest(EventGridTriggerEvent event, Context context){
 System.out.println(event);return "ok";
 }
}

Figure 4-5 Defining the function handler

There are multiple handler functions with different trigger event types. You
can modify the handler on the FunctionGraph console to test different
handler functions. For details about the constraints for the APIG event
source, see Base64 Decoding and Response Structure.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

NO TE

Modifying the function handler:

In the navigation pane on the left of the FunctionGraph console, choose Functions >
Function List. Click the name of the function to be set. On the function details page
that is displayed, choose Configuration > Basic Settings and set the Handler
parameter, as shown in Figure 4-6.

Figure 4-6 Function handler

Step 2: Packaging a Java Project
1. Choose File > Project Structure. The Project Structure page is displayed, as

shown in Figure 4-7.

Figure 4-7 Going to the Project Structure page

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

2. Choose Artifacts and click + to add artifacts, as shown in Figure 4-8.

Figure 4-8 Adding artifacts

3. Add a main class, as shown in Figure 4-9.

Figure 4-9 Adding a main class

4. Choose Build > Build Artifacts to compile the JAR file, as shown in Figure
4-10.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

Figure 4-10 Choosing Build Artifacts to compile the JAR file

Step 3: Creating and Testing a Java Function
1. Log in to the FunctionGraph console. In the navigation pane on the left,

choose Functions > Function List. On the displayed page, click Create
Function in the upper right corner. On the displayed page, select Create from
scratch.

2. Configure the basic function information, as shown in Figure 4-11. Set
Runtime to Java 17. After the configuration is complete, click Create
Function in the lower right corner.

Figure 4-11 Creating a Java function

3. On the function details page, click the Code tab, and click Upload > Local
JAR on the right to upload the JAR file exported in Step 2: Packaging a Java
Project, as shown in Figure 4-12.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us#

Figure 4-12 Uploading a JAR file

4. After the upload is successful, choose Configuration > Basic Settings, modify
the handler of the function to be tested, and click Save.

5. Return to the Code tab page, click Test in the code editing area, and click
Configure Test Event. In the cloud event template list, select the event
template to be tested and click Create.

6. Click Test and view the execution result.
The function execution result consists of three parts: function output
(returned by callback), summary, and logs (output by using the console.log
or getLogger() method). For details, see Table 4-17.

Table 4-17 Description of the execution result

Param
eter

Successful Execution Failed Execution

Functio
n
Output

The defined function
output information is
returned.

A JSON file that contains
errorMessage and stackTrace is
returned. The format is as follows:
{
 "errorMessage": "",
 "stackTrace": []
}

errorMessage: Error message
returned by the runtime.
stackTrace: Stack error information
returned by the runtime.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory
Used, and Billed Duration are
displayed.

Log
Output

Function logs are printed.
A maximum of 4 KB logs
can be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

NO TE

To test other event source triggers in the sample code, such as SMN, change the
handler to com.huawei.demo.TriggerTests.smnTest on the Basic Settings page, and
create an SMN test event to test the function.

4.2.2 Developing Functions in Java (Using an IDEA Maven
Project)

This section describes how to develop functions in Java using an IDEA Maven
project. For details about the Java syntax, initializer and SDK APIs, see Function
Development Overview.

Procedure
You can create a Java project and Java function following the steps in this section,
or download the Maven sample project package and start from Step 3: Creating
and Testing a Java Function.

Step 1: Creating a Maven Project Using IDEA
1. Create a function project.

Configure IDEA and create a Maven project, as shown in Figure 4-13.

Figure 4-13 Creating a project

2. Add dependencies to the project.
Download the Java SDK to a local development environment, and
decompress the SDK package, as shown in Figure 4-14.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/java/fss-java-sdk-2.0.5.zip

Figure 4-14 Decompressing the downloaded SDK

a. Copy Runtime-2.0.5.jar in the package to a local directory, for example,
d:\\runtime. Then, run the following command in the CLI to install the
runtime to the local Maven repository:
mvn install:install-file -Dfile=d:\runtime\RunTime-2.0.5.jar -DgroupId=RunTime -
DartifactId=RunTime -Dversion=2.0.5 -Dpackaging=jar

b. Configure the dependency in the pom.xml file.
<dependency>
<groupId>Runtime</groupId>
<artifactId>Runtime</artifactId>
<version>2.0.5</version>
</dependency>

c. Configure other dependencies. The following uses the OBS dependency as
an example.
<dependency>
<groupId>com.huaweicloud</groupId>
<artifactId>esdk-obs-java</artifactId>
<version>3.21.4</version>
</dependency>

d. Add a plug-in to pom.xml to pack the code and dependencies together.
Replace mainClass with the actual class.
<build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 <archive>
 <manifest>
 <mainClass>com.huawei.demo.TriggerTests</mainClass>
 </manifest>
 </archive>
 <finalName>${project.name}</finalName>
 </configuration>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals><goal>single</goal>
 </goals>
 </execution>
 </executions>

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

 </plugin>
 </plugins>
</build>

3. Configure the function resources.
Create a package named com.huawei.demo, and then create a class named
TriggerTests under the package, as shown in Figure 4-15.

Figure 4-15 Creating the TriggerTests class

4. Configure the function code.
Define the function handler in TriggerTests.java.
package com.huawei.demo;

import java.io.UnsupportedEncodingException;
import java.util.HashMap;
import java.util.Map;

import com.huawei.services.runtime.Context;
import com.huawei.services.runtime.entity.apig.APIGTriggerEvent;
import com.huawei.services.runtime.entity.apig.APIGTriggerResponse;
import com.huawei.services.runtime.entity.dis.DISTriggerEvent;
import com.huawei.services.runtime.entity.dms.DMSTriggerEvent;
import com.huawei.services.runtime.entity.lts.LTSTriggerEvent;
import com.huawei.services.runtime.entity.smn.SMNTriggerEvent;
import com.huawei.services.runtime.entity.timer.TimerTriggerEvent;
import com.huawei.services.runtime.entity.eventgrid.EventGridTriggerEvent;

public class TriggerTests {
 public APIGTriggerResponse apigTest(APIGTriggerEvent event, Context context){
 System.out.println(event);
 Map<String, String> headers = new HashMap<String, String>();
 headers.put("Content-Type", "application/json");
 return new APIGTriggerResponse(200, headers, event.toString());
 }

 public String smnTest(SMNTriggerEvent event, Context context){
 System.out.println(event);
 return "ok";
 }

 public String dmsTest(DMSTriggerEvent event, Context context){
 System.out.println(event);
 return "ok";
 }

 public String timerTest(TimerTriggerEvent event, Context context){
 System.out.println(event);

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

 return "ok";
 }

 public String disTest(DISTriggerEvent event, Context context) throws
UnsupportedEncodingException{
 System.out.println(event);
 System.out.println(event.getMessage().getRecords()[0].getRawData());
 return "ok";
 }

 public String ltsTest(LTSTriggerEvent event, Context context) throws
UnsupportedEncodingException {
 System.out.println(event);
 event.getLts().getData();
 System.out.println("raw data: " + event.getLts().getRawData());
 return "ok";
 }

 public String eventgridTest(EventGridTriggerEvent event, Context context){
 System.out.println(event);return "ok";
 }
}

There are multiple handler functions with different trigger event types. You
can modify the handler on the FunctionGraph console to test different
handler functions. For details about the constraints for the APIG event
source, see Base64 Decoding and Response Structure.

NO TE

Modifying the function handler:
In the navigation pane on the left of the FunctionGraph console, choose Functions >
Function List. Click the name of the function to be set. On the function details page
that is displayed, choose Configuration > Basic Settings and set the Handler
parameter, as shown in Figure 4-16.

Figure 4-16 Function handler

5. Compile and pack the project file.
Run the following command to compile and pack the project file: After
compilation is complete, the xx-jar-with-dependencies.jar file is generated in
the target directory.
mvn package assembly:single

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

Step 2: Creating and Testing a Java Function
1. Log in to the FunctionGraph console. In the navigation pane on the left,

choose Functions > Function List. On the displayed page, click Create
Function in the upper right corner. On the displayed page, select Create from
scratch.

2. Configure the basic function information, as shown in Figure 4-17. Then, click
Create Function in the lower right corner.

Figure 4-17 Creating a Java function

3. On the function details page, click the Code tab, and click Upload > Local
JAR on the right to upload the JAR file exported in Step 1: Creating a Maven
Project Using IDEA.

4. After the upload is successful, choose Configuration > Basic Settings, modify
the handler of the function to be tested, and click Save.

5. Return to the Code tab page, click Test in the code editing area, and click
Configure Test Event. In the cloud event template list, select the event
template to be tested and click Create.

6. Click Test and view the execution result.
The function execution result consists of three parts: function output
(returned by callback), summary, and logs (output by using the console.log
or getLogger() method). For details, see Table 4-18.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us#

Table 4-18 Description of the execution result

Param
eter

Successful Execution Failed Execution

Functio
n
Output

The defined function
output information is
returned.

A JSON file that contains
errorMessage and stackTrace is
returned. The format is as follows:
{
 "errorMessage": "",
 "stackTrace": []
}

errorMessage: Error message
returned by the runtime.
stackTrace: Stack error information
returned by the runtime.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory
Used, and Billed Duration are
displayed.

Log
Output

Function logs are printed.
A maximum of 4 KB logs
can be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

NO TE

To test other event source triggers in the sample code, such as SMN, change the
handler to com.huawei.demo.TriggerTests.smnTest on the Basic Settings page, and
create an SMN test event to test the function.

4.3 Developing an HTTP Function Using Java
This section describes how to develop an HTTP function using Java. For details
about HTTP function, see Creating an HTTP Function.

Constraints
● HTTP functions can only use APIG or APIC triggers.

According to the forwarding protocol between FunctionGraph and APIG/APIC,
a valid HTTP function response must contain body(String), statusCode(int),
headers(Map), and isBase64Encoded(boolean). By default, the response is
encoded using Base64. The default value of isBase64Encoded is true. The
same applies to other frameworks. For details, see Base64 Decoding and
Return Structure.

● By default, port 8000 is enabled for HTTP functions.
● Table 4-15 describes the context methods provided by FunctionGraph.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1442.html

Example of Using Java to Develop an HTTP Function
Overview

Usually, you may build Spring Boot applications using SpringInitializr or IntelliJ
IDEA. This chapter uses the Spring.io project in https://spring.io/guides/gs/rest-
service/ as an example to deploy an HTTP function on FunctionGraph.

Procedure

This example describes how to use an existing Spring Boot project to build an
HTTP function and deploy services on FunctionGraph.

For details, see Building an HTTP Function with Spring Boot.

4.4 Creating an Event Function Using a Container
Image Built with Java

For details about how to use a container image to create and execute an event
function, see Creating an Event Function Using a Container Image and
Executing the Function. This section describes how to create an image using Java
and verify the image locally.

Step 1: Creating an Image
Take the Linux x86 64-bit OS as an example. (There are no specific requirements
for system configurations.)

1. Run the following command to create a folder:
mkdir custom_container_event_example && cd custom_container_event_example

2. Use IntelliJ IDEA to create a Spring Boot project and select Spring Web, as
shown in Figure 4-19.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

https://start.spring.io/
https://spring.io/guides/gs/rest-service/
https://spring.io/guides/gs/rest-service/
https://support.huaweicloud.com/intl/en-us/bestpractice-functiongraph/functiongraph_05_1035.html
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html

Figure 4-18 Creating a Spring Boot project

Figure 4-19 Selecting Spring Web

3. Use Java to implement an HTTP server demo to process HTTP requests and
send responses.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

Additionally create a controller package in the demo and implement a
HelloWorld class to handle requests. The code is as follows:
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class HelloWorld {
 //Create a logger for recording debugging information.
 private static final Logger logger = LogManager.getLogger(HelloWorld.class);

 //Process the /init request.
 @RequestMapping("/init")
 public String init() {
 logger.debug("access init");
 return "hello init!!";
 }

 // Process the /invoke request.
 @RequestMapping("/invoke")
 public String invoke() {
 logger.debug("access invoke");
 return "hello invoke!!";
 }

}

4. Create a Dockerfile file and replace demoSpringBoot-0.0.1-SNAPSHOT.jar
with the compiled JAR package.
FROM ubuntu:22.04

ENV HOME=/home/paas
ENV GROUP_ID=1003
ENV GROUP_NAME=paas_user
ENV USER_ID=1003
ENV USER_NAME=paas_user

RUN mkdir -m 550 ${HOME} && groupadd -g ${GROUP_ID} ${GROUP_NAME} && useradd -u $
{USER_ID} -g ${GROUP_ID} ${USER_NAME}

RUN apt-get update && \
 apt-get install -y --no-install-recommends openjdk-21-jre-headless maven && \
 apt-get clean

COPY demoSpringBoot-0.0.1-SNAPSHOT.jar ${HOME}/

RUN chown -R ${USER_ID}:${GROUP_ID} ${HOME}
RUN chmod -R 775 ${HOME}

USER ${USER_NAME}
WORKDIR ${HOME}
EXPOSE 8000
ENTRYPOINT ["java", "-jar", "-Dfile.encoding=utf-8" ,"/home/paas/demoSpringBoot-0.0.1-
SNAPSHOT.jar"]

Table 4-19 Parameter description

Parame
ter

Description

FROM Specifies base image ubuntu:22.04. The base image is
mandatory and its value can be changed.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

Parame
ter

Description

ENV Sets environment variables HOME (/home/custom_container),
GROUP_NAME and USER_NAME (custom_container), and
USER_ID and GROUP_ID (1003). These environment variables
are mandatory and their values can be changed.

RUN Executes commands. The format is RUN <command>. For
example, RUN mkdir -m 550 ${HOME} means to create
directory ${HOME} for user ${USER_NAME} during container
building.

COPY Copies files or directories from the build context to the image.
Copy demoSpringBoot-0.0.1-SNAPSHOT.jar to the ${HOME}
directory of user ${USER_NAME} in the container.

USER Switches to user ${USER_NAME}.

WORKDI
R

Switches the working directory to the ${HOME} directory of user
${USER_NAME}.

EXPOSE Expose port 8000 of the container. Do not change it.

ENTRYP
OINT

Sets the executable command that is run each time a container
starts. Run the following command to start a container:
java -jar -Dfile.encoding=utf-8 /home/paas/demoSpringBoot-0.0.1-SNAPSHOT.jar

5. Run the following command to build an image:
docker build -t custom_container_event_example:latest .

In the preceding command, the image name is
custom_container_event_example, the tag is latest, and the period (.)
indicates the directory where the Dockerfile is located. Run the image build
command to pack all files in the directory and send the package to a
container engine to build an image.

Step 2: Performing Local Verification
1. Run the following command to start the Docker container:

docker run -u 1003:1003 -p 8000:8000 custom_container_event_example:latest

2. Open a new Command Prompt, and send a message through port 8000 to
access the /*** directory specified in the template code.
curl -XPOST -H 'Content-Type: application/json' localhost:8000/***

The following information is returned based on the module code:
hello invoke!!

Step 3: Creating a Function

Once you build the container image locally, you can create a function on the
console.

For details, see Creating an Event Function Using a Container Image and
Executing the Function. Start from Step 3: Upload the Image.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html#section4
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html#section4

Helpful Links
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

● For details about the syntax and SDK APIs of function development in Java,
see Function Development Overview.

4.5 Creating an HTTP Function Using a Container
Image Built with Java

For details about how to use a container image to create and execute an HTTP
function, see Creating an HTTP Function Using a Container Image and
Executing the Function. This section describes how to create an image using Java
and verify the image locally.

Step 1: Creating an Image

Take the Linux x86 64-bit OS as an example. (There are no specific requirements
for system configurations.)

1. Run the following command to create a folder:
mkdir custom_container_http_example && cd custom_container_http_example

2. Use IntelliJ IDEA to create a Spring Boot project and select Spring Web, as
shown in Figure 4-21.

Figure 4-20 Creating a Spring Boot project

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html

Figure 4-21 Selecting Spring Web

3. Use Java to implement an HTTP server demo to process HTTP requests and
send responses.

Additionally create a controller package in the demo and implement a
HelloWorld class to handle requests. The code is as follows:
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping("/hello")
public class HelloWorld {
 //Create a logger for recording debugging information.
 private static final Logger logger = LogManager.getLogger(HelloWorld.class);

 //Process the /init request.
 @RequestMapping("/world")
 public String world() {
 logger.debug("hello world");
 return "hello world!!";
 }

 // Process the /invoke request.
 @RequestMapping("/china")
 public String china() {
 logger.debug("hello china");
 return "hello china!!";
 }

}

4. Create a Dockerfile file and replace demoSpringBoot-0.0.1-SNAPSHOT.jar
with the compiled JAR package.

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

FROM ubuntu:22.04

ENV HOME=/home/paas
ENV GROUP_ID=1003
ENV GROUP_NAME=paas_user
ENV USER_ID=1003
ENV USER_NAME=paas_user

RUN mkdir -m 550 ${HOME} && groupadd -g ${GROUP_ID} ${GROUP_NAME} && useradd -u $
{USER_ID} -g ${GROUP_ID} ${USER_NAME}

RUN apt-get update && \
 apt-get install -y --no-install-recommends openjdk-21-jre-headless maven && \
 apt-get clean

COPY demoSpringBoot-0.0.1-SNAPSHOT.jar ${HOME}/

RUN chown -R ${USER_ID}:${GROUP_ID} ${HOME}
RUN chmod -R 775 ${HOME}

USER ${USER_NAME}
WORKDIR ${HOME}
EXPOSE 8000
ENTRYPOINT ["java", "-jar", "-Dfile.encoding=utf-8" ,"/home/paas/demoSpringBoot-0.0.1-
SNAPSHOT.jar"]

Table 4-20 Parameter description

Parameter Description

FROM Specifies base image ubuntu:22.04. The base image is
mandatory and its value can be changed.

ENV Sets environment variables HOME (/home/
custom_container), GROUP_NAME and USER_NAME
(custom_container), and USER_ID and GROUP_ID (1003).
These environment variables are mandatory and their values
can be changed.

RUN Executes commands. The format is RUN <command>. For
example, RUN mkdir -m 550 ${HOME} means to create
directory ${HOME} for user ${USER_NAME} during container
building.

COPY Copies files or directories from the build context to the image.
Copy demoSpringBoot-0.0.1-SNAPSHOT.jar to the ${HOME}
directory of user ${USER_NAME} in the container.

USER Switches to user ${USER_NAME}.

WORKDIR Switches the working directory to the ${HOME} directory of
user ${USER_NAME}.

EXPOSE Expose port 8000 of the container. Do not change it.

ENTRYPOI
NT

Sets the executable command that is run each time a
container starts. Run the following command to start a
container:
java -jar -Dfile.encoding=utf-8 /home/paas/demoSpringBoot-0.0.1-SNAPSHOT.jar

5. Run the following command to build an image:

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

docker build -t custom_container_http_example:latest .

In the preceding command, the image name is
custom_container_http_example, the tag is latest, and the period (.)
indicates the directory where the Dockerfile is located. Run the image build
command to pack all files in the directory and send the package to a
container engine to build an image.

Step 2: Performing Local Verification
1. Run the following command to start the Docker container:

docker run -u 1003:1003 -p 8000:8000 custom_container_http_example:latest

2. Open a new Command Prompt, and send a message through port 8000 to
access the /hello/world directory specified in the template code.
curl -XPOST -H 'Content-Type: application/json' localhost:8000/hello/world

The following information is returned based on the module code:
hello world!!

Step 3: Creating a Function
Once you build the container image locally, you can create a function on the
console.

For details, see Creating an HTTP Function Using a Container Image and
Executing the Function. Start from Step 3: Upload the Image.

Helpful Links
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

● For details about the syntax and SDK APIs of function development in Java,
see Function Development Overview.

4.6 Java Function Template

Java Function
The following is a sample code template of a Java function.

Each method corresponds to a specific trigger event, prints event information, and
returns a response. You can create triggers and change the function handler to
test Java functions.

Download the Java SDK to a local development environment, and decompress the
SDK package. For complete Java function development example, see Developing
a Java Event Function and Developing an HTTP Function Using Java.

package com.huawei.demo;
import com.huawei.services.runtime.Context;
import com.huawei.services.runtime.entity.apig.APIGTriggerEvent;
import com.huawei.services.runtime.entity.apig.APIGTriggerResponse;
import com.huawei.services.runtime.entity.dis.DISTriggerEvent;
import com.huawei.services.runtime.entity.dms.DMSTriggerEvent;
import com.huawei.services.runtime.entity.lts.LTSTriggerEvent;
import com.huawei.services.runtime.entity.smn.SMNTriggerEvent;

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html#section4
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html#section4
https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/java/fss-java-sdk-2.0.5.zip

import com.huawei.services.runtime.entity.timer.TimerTriggerEvent;
import com.huawei.services.runtime.entity.eventgrid.EventGridTriggerEvent;
import java.io.UnsupportedEncodingException;
import java.util.HashMap;
import java.util.Map;

public class TriggerTests {
 public APIGTriggerResponse apigTest(APIGTriggerEvent event, Context context) {
 System.out.println(event);
 Map<String, String> headers = new HashMap<>();
 headers.put("Content-Type", "application/json");
 return new APIGTriggerResponse(200, headers, event.toString());
 }

 public String smnTest(SMNTriggerEvent event, Context context) {
 System.out.println(event);
 return "ok";
 }

 public String dmsTest(DMSTriggerEvent event, Context context) {
 System.out.println(event);
 return "ok";
 }

 public String timerTest(TimerTriggerEvent event, Context context) {
 System.out.println(event);
 return "ok";
 }

 public String disTest(DISTriggerEvent event, Context context) throws UnsupportedEncodingException {
 System.out.println(event);
 System.out.println(event.getMessage().getRecords()[0].getRawData());
 return "ok";
 }

 public String ltsTest(LTSTriggerEvent event, Context context) throws UnsupportedEncodingException {
 System.out.println(event);
 System.out.println("raw data: " + event.getLts().getRawData());
 return "ok";
 }

 public String eventgridTest(EventGridTriggerEvent event, Context context){
 System.out.println(event);return "ok";
 }
}

4.7 Creating a Dependency for a Java Function

Constraints
If the modules to be installed need dependencies such as .dll, .so, and .a, archive
them to a .zip package.

Dependency Creation Description
When you develop a function using Java, dependencies need to be compiled
locally, compressed into a ZIP file, and uploaded through the ZIP file.

For details about how to create and add a dependency to a Java function, see
Developing Functions in Java (Using IDEA to Create a Java Project).

FunctionGraph
Developer Guide 4 Java

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

5 Go

5.1 Function Development Overview

Function Syntax

FunctionGraph supports Go 1.x. The following shows the function syntax.

func Handler (payload []byte, ctx context.RuntimeContext)

● Handler: name of the handler function.

● payload: event parameter defined for the function. The parameter is in JSON
format.

● ctx: runtime information provided for executing the function. For details, see
SDK APIs.

The format of the Go function handler is the same as the name of the executable
file in the code package. Ensure that the name of the dynamic library file is
consistent with the plug-in name of the handler. For example, if the name of the
dynamic library file is testplugin.so, set the handler name to testplugin.Handler.
You can configure or modify the handler on the function details page on the
FunctionGraph console.

SDK APIs

The Go SDK provides event, context, and logging APIs. Download the Go SDK
(Go SDK.sha256).

● Event APIs

Event structure definitions are added to the Go SDK. Currently, DIS, DDS,
SMN, Timer, and APIG triggers are supported. The definitions make coding
much simpler when triggers are required.

a. APIG trigger field description

i. APIGTriggerEvent fields

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/functiongraph-go-runtime-sdk-1.0.1.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/public-material-sha256/functiongraph-go-runtime-sdk-1.0.1.zip.sha256

Table 5-1 APIGTriggerEvent fields

Field Description

IsBase64Encoded Whether the body of an event is
encoded using Base64.

HttpMethod HTTP request method.

Path HTTP request path.

Body HTTP request body.

PathParameters All path parameters.

RequestContext API Gateway configurations
(APIGRequestContext object).

Headers HTTP request header.

QueryStringParameters Query parameters.

UserData User data set in the APIG
custom authorizer.

Table 5-2 APIGRequestContext fields

Field Description

ApiId API ID.

RequestId API request ID.

Stage Name of the environment in
which an API has been
published.

ii. APIGTriggerResponse fields

Table 5-3 APIGTriggerResponse fields

Field Description

Body Message body.

Headers HTTP response header to be
returned.

StatusCode HTTP status code. Type: int.

IsBase64Encoded Whether the body has been
encoded using Base64. Type:
bool.

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

NO TE

APIGTriggerEvent provides the GetRawBody() method to obtain the body
decoded using Base64. APIGTriggerResponse provides the
SetBase64EncodedBody() method to set the body encoded using Base64.

b. DIS trigger field description

Table 5-4 DISTriggerEvent fields

Field Description

ShardID Partition ID.

Message DIS message body (DISMessage
structure).

Tag Function version.

StreamName Stream name.

Table 5-5 DISMessage fields

Field Description

NextPartitionCursor Next partition cursor.

Records Message records (DISRecord
structure).

MillisBehindLatest Reserved parameter.

Table 5-6 DISRecord fields

Field Description

PartitionKey Data partition.

Data Data.

SequenceNumber Sequence number (ID of each
record).

c. Kafka trigger field description

Table 5-7 KAFKATriggerEvent fields

Field Description

InstanceId Instance ID.

Records Message records (Table 5-8).

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

Field Description

TriggerType Trigger type (Kafka).

Region Region.

EventTime Time when an event occurred
(seconds).

EventVersion Event version.

Table 5-8 KAFKARecord parameters

Field Description

Messages DMS message body.

TopicId Topic ID.

d. SMN trigger field description

Table 5-9 SMNTriggerEvent fields

Field Description

Record Message records (SMNRecord
structure).

Table 5-10 SMNRecord fields

Field Description

EventVersion Event version. (Currently, the
version is 1.0.)

EventSubscriptionUrn Subscription URN.

EventSource Event source.

Smn Message body (SMNBody
structure).

Table 5-11 SMNBody fields

Field Description

TopicUrn Topic URN.

TimeStamp Message timestamp.

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

Field Description

MessageAtrributes Message attribute set.

Message Message body.

Type Message format.

MessageId Message ID.

Subject Message topic.

e. Timer trigger field description

Table 5-12 TimerTriggerEvent fields

Field Description

Version Version. (Currently, the version is
v1.0.)

Time Current time.

TriggerType Trigger type (Timer).

TriggerName Trigger name.

UserEvent Additional information about the
trigger.

NO TE

1. When using an APIG trigger, set the first parameter of the handler function (for
example, handler) to handler(APIGTriggerEvent event, Context context). For
details about the constraints, see Base64 Decoding and Response Structure.

2. The preceding TriggerEvent methods have corresponding set methods, which are
recommended for local debugging. DIS and LTS triggers have getRawData()
methods, but do not have setRawData() methods.

● Context APIs
The context APIs are used to obtain the context, such as agency AK/SK,
current request ID, allocated memory space, and number of CPUs, required for
executing a function.
Table 5-13 describes the context APIs provided by FunctionGraph.

Table 5-13 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeInMilli-
getRunningTimeInSe-
condsSeconds ()

Obtains the remaining running time of a
function.

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

Method Description

getAccessKey() Obtains the AK (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.
FunctionGraph has stopped maintaining the
getAccessKey API in the Runtime SDK. You
cannot use this API to obtain a temporary
AK.

getSecretKey() Obtains the SK (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.
FunctionGraph has stopped maintaining the
getSecretKey API in the Runtime SDK. You
cannot use this API to obtain a temporary
SK.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid for 24
hours) with an agency. The cache duration is
10 minutes. That is, the same content is
returned within 10 minutes. To use this
method, you need to configure an agency for
the function.

getSecuritySecretKey() Obtains the SecuritySecretKey (valid for 24
hours) with an agency. The cache duration is
10 minutes. That is, the same content is
returned within 10 minutes. To use this
method, you need to configure an agency for
the function.

getSecurityToken() Obtains the SecurityToken (valid for 24 hours)
with an agency. The cache duration is 10
minutes. That is, the same content is returned
within 10 minutes. To use this method, you
need to configure an agency for the function.

getUserData(string key) Uses keys to obtain the values passed by
environment variables.

getFunctionName() Obtains the name of a function.

getRunningTimeInSeconds
()

Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() Obtains CPU usage of a function.

getPackage() Obtains a function group.

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

Method Description

getToken() Obtains the token (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.

getLogger() Obtains the logger method provided by the
context. By default, information such as the
time and request ID is output.

getAlias() Obtains function alias.

● Table 5-14 describes the logging API provided in the Go SDK.

Table 5-14 Logging API

Method Description

RuntimeLogger() ● Records user input logs by using
the method Logf(format string,
args ...interface{}).

● This method outputs logs in the
format of Time-Request ID-
Output, for example,
2017-10-25T09:10:03.328Z
473d369d-101a-445e-
a7a8-315cca788f86 test log
output.

5.2 Developing a Go Event Function
For details about the syntax and SDK APIs of Go functions, see Function
Development Overview.

Developing a Go Function
Log in to the Linux server where the Go 1.x SDK has been installed and perform
the following steps to compile and package the Go function. (Currently, Ubuntu
14.04, Ubuntu 16.04, SUSE 11.3, SUSE 12.0, and SUSE 12.1 are supported.)

Go Versions Supporting go mod (1.11.1+)

Step 1 Create a temporary directory, for example, /home/fssgo, decompress the Go SDK
of FunctionGraph to the created directory, and enable the go module function.
$ mkdir -p /home/fssgo
$ unzip functiongraph-go-runtime-sdk-1.0.1.zip -d /home/fssgo
$ export GO111MODULE="on"

Step 2 Generate the go.mod file in the /home/fssgo directory. Assume that the module
name is test:
$ go mod init test

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/functiongraph-go-runtime-sdk-1.0.1.zip

Step 3 Edit the go.mod file in the /home/fssgo directory as required (that is, add the
content in bold).
module test

go 1.24.5

require (
 huaweicloud.com/go-runtime v0.0.0-00010101000000-000000000000
)

replace (
 huaweicloud.com/go-runtime => ./go-runtime
)

Step 4 Create a function file under the /home/fssgo directory and implement the
following interface:

func Handler(payload []byte, ctx context.RuntimeContext) (interface{}, error)

In this interface, payload is the body of a client request, and ctx is the runtime
context object provided for executing a function. For more information about the
methods, see Table 5-13. The following uses test.go as an example.

package main

import (
 "fmt"
 "huaweicloud.com/go-runtime/go-api/context"
 "huaweicloud.com/go-runtime/pkg/runtime"
 "huaweicloud.com/go-runtime/events/apig"
 "huaweicloud.com/go-runtime/events/cts"
 "huaweicloud.com/go-runtime/events/dds"
 "huaweicloud.com/go-runtime/events/dis"
 "huaweicloud.com/go-runtime/events/kafka"
 "huaweicloud.com/go-runtime/events/lts"
 "huaweicloud.com/go-runtime/events/smn"
 "huaweicloud.com/go-runtime/events/timer"
 "encoding/json"
)

func ApigTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var apigEvent apig.APIGTriggerEvent
 err := json.Unmarshal(payload, &apigEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", apigEvent.String())
 apigResp := apig.APIGTriggerResponse{
 Body: apigEvent.String(),
 Headers: map[string]string {
 "content-type": "application/json",
 },
 StatusCode: 200,
 }
 return apigResp, nil
}

func CtsTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var ctsEvent cts.CTSTriggerEvent
 err := json.Unmarshal(payload, &ctsEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", ctsEvent.String())
 return "ok", nil
}

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

func DdsTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var ddsEvent dds.DDSTriggerEvent
 err := json.Unmarshal(payload, &ddsEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", ddsEvent.String())
 return "ok", nil
}

func DisTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var disEvent dis.DISTriggerEvent
 err := json.Unmarshal(payload, &disEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", disEvent.String())
 return "ok", nil
}

func KafkaTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var kafkaEvent kafka.KAFKATriggerEvent
 err := json.Unmarshal(payload, &kafkaEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", kafkaEvent.String())
 return "ok", nil
}

func LtsTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var ltsEvent lts.LTSTriggerEvent
 err := json.Unmarshal(payload, <sEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", ltsEvent.String())
 return "ok", nil
}

func SmnTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var smnEvent smn.SMNTriggerEvent
 err := json.Unmarshal(payload, &smnEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", smnEvent.String())
 return "ok", nil
}

func TimerTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var timerEvent timer.TimerTriggerEvent
 err := json.Unmarshal(payload, &timerEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 return timerEvent.String(), nil
}

func main() {
 runtime.Register(ApigTest)
}

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

Constraints:

1. If the error parameter returned by a function is not nil, the function
execution fails.

2. If the error parameter returned by a function is nil, FunctionGraph supports
only the following types of values:
nil: The HTTP response body is empty.
[]byte: The content in this byte array is the body of an HTTP response.
string: The content in this string is the body of an HTTP response.
Other: FunctionGraph returns a value for JSON encoding, and uses the
encoded object as the body of an HTTP response. The Content-Type header
of the HTTP response is set to application/json.

3. The preceding example uses an APIG trigger as an example. For other
trigger types, you need to modify the content of the main function. For
example, change the CTS trigger to runtime.Register(CtsTest). Currently,
only one entry can be registered.

4. For details about the constraints for the APIG event source, see Base64
Decoding and Response Structure.

Step 5 Compile and package the function code.

After completing the function code, compile and package it as follows:

1. Compile the code.
$ cd /home/fssgo
$ go build -o handler test.go

NO TE

The handler can be customized on the function details page on the FunctionGraph
console.

2. Package the code.
$ zip fss_examples_go1.x.zip handler

Step 6 Create a function.

Log in to the FunctionGraph console, create a Go 1.x function, and upload the
code package fss_examples_go1.x.zip.

If you edit code in Go, package the compiled file into a ZIP file, and ensure that
the name of the compiled file is consistent with the handler. For example, if the
name of the binary file is handler, set the Handler to handler. The handler must
be consistent with that defined in Step 3.2.

Step 7 Test the function.

1. Create a test event.
On the function details page that is displayed, click Configure Test Event.
Configure the test event information, as shown in Figure 5-1, and then click
Create.

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

Figure 5-1 Configuring a test event

2. On the function details page, select the configured test event, click Test, and
view the function execution result by referring to Function Execution Result.

----End

Go Versions not Supporting go mod (<1.11.1)

Step 1 Create a temporary directory, for example, /home/fssgo/src/huaweicloud.com,
and decompress the Go SDK to the created directory.

$ mkdir -p /home/fssgo/src/huaweicloud.com

$ unzip functiongraph-go-runtime-sdk-1.0.1.zip -d /home/fssgo/src/
huaweicloud.com

Step 2 Create a function file under the /home/fssgo/src directory and implement the
following interface:

func Handler(payload []byte, ctx context.RuntimeContext) (interface{}, error)

In this interface, payload is the body of a client request, and ctx is the runtime
context object provided for executing a function. For more information about the
methods, see the SDK APIs. The following uses test.go as an example.

package main

import (
 "fmt"
 "huaweicloud.com/go-runtime/go-api/context"
 "huaweicloud.com/go-runtime/pkg/runtime"
 "huaweicloud.com/go-runtime/events/apig"
 "huaweicloud.com/go-runtime/events/cts"
 "huaweicloud.com/go-runtime/events/dds"
 "huaweicloud.com/go-runtime/events/dis"
 "huaweicloud.com/go-runtime/events/kafka"
 "huaweicloud.com/go-runtime/events/lts"
 "huaweicloud.com/go-runtime/events/smn"
 "huaweicloud.com/go-runtime/events/timer"
 "encoding/json"
)

func ApigTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var apigEvent apig.APIGTriggerEvent
 err := json.Unmarshal(payload, &apigEvent)

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/functiongraph-go-runtime-sdk-1.0.1.zip

 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", apigEvent.String())
 apigResp := apig.APIGTriggerResponse{
 Body: apigEvent.String(),
 Headers: map[string]string {
 "content-type": "application/json",
 },
 StatusCode: 200,
 }
 return apigResp, nil
}

func CtsTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var ctsEvent cts.CTSTriggerEvent
 err := json.Unmarshal(payload, &ctsEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", ctsEvent.String())
 return "ok", nil
}

func DdsTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var ddsEvent dds.DDSTriggerEvent
 err := json.Unmarshal(payload, &ddsEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", ddsEvent.String())
 return "ok", nil
}

func DisTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var disEvent dis.DISTriggerEvent
 err := json.Unmarshal(payload, &disEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", disEvent.String())
 return "ok", nil
}

func KafkaTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var kafkaEvent kafka.KAFKATriggerEvent
 err := json.Unmarshal(payload, &kafkaEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", kafkaEvent.String())
 return "ok", nil
}

func LtsTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var ltsEvent lts.LTSTriggerEvent
 err := json.Unmarshal(payload, <sEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", ltsEvent.String())
 return "ok", nil
}

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

func SmnTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var smnEvent smn.SMNTriggerEvent
 err := json.Unmarshal(payload, &smnEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 ctx.GetLogger().Logf("payload:%s", smnEvent.String())
 return "ok", nil
}

func TimerTest(payload []byte, ctx context.RuntimeContext) (interface{}, error) {
 var timerEvent timer.TimerTriggerEvent
 err := json.Unmarshal(payload, &timerEvent)
 if err != nil {
 fmt.Println("Unmarshal failed")
 return "invalid data", err
 }
 return timerEvent.String(), nil
}

func main() {
 runtime.Register(ApigTest)
}

Constraints:

1. If the error parameter returned by a function is not nil, the function
execution fails.

2. If the error parameter returned by a function is nil, FunctionGraph supports
only the following types of values:
nil: The HTTP response body is empty.
[]byte: The content in this byte array is the body of an HTTP response.
string: The content in this string is the body of an HTTP response.
Other: FunctionGraph returns a value for JSON encoding, and uses the
encoded object as the body of an HTTP response. The Content-Type header
of the HTTP response is set to application/json.

3. The preceding example uses an APIG trigger as an example. For other
trigger types, you need to modify the content of the main function. For
example, change the CTS trigger to runtime.Register(CtsTest). Currently,
only one entry can be registered.

4. For details about the constraints for the APIG event source, see Base64
Decoding and Response Structure.

Step 3 Compile and package the function code.

After completing the function code, compile and package it as follows:

1. Set environment variables GOROOT and GOPATH.
$ export GOROOT=/usr/local/go (Assume that the Go SDK is installed under the /usr/local/go
directory.)
$ export PATH=$GOROOT/bin:$PATH
$ export GOPATH=/home/fssgo

2. Compile the function code.
$ cd /home/fssgo
$ go build -o handler test.go

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

NO TE

The handler can be customized on the function details page on the FunctionGraph
console.

3. Package the code.
$ zip fss_examples_go1.x.zip handler

Step 4 Creating a function

Log in to the FunctionGraph console, create a Go 1.x function, and upload the
code package fss_examples_go1.x.zip.

If you edit code in Go, package the compiled file into a ZIP file, and ensure that
the name of the compiled file is consistent with the handler name. For example, if
the name of the binary file is handler, set the Handler to handler. The handler
must be consistent with that defined in Step 3.2.

Step 5 Test the function.

1. Create a test event.
On the function details page that is displayed, click Configure Test Event.
Configure the test event information, as shown in Figure 5-2, and then click
Create.

Figure 5-2 Configuring a test event

2. On the function details page, select the configured test event, click Test, and
view the function execution result by referring to Function Execution Result.

----End

Function Execution Result
The execution result consists of the function output, summary, and log output.

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

Table 5-15 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage and errorType is
returned. The format is as follows:
{
 "errorMessage": "",
 "errorType":"",
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

5.3 Developing an HTTP Function Using Go
This section describes how to develop an HTTP function using Go. For details
about HTTP function, see Creating an HTTP Function.

Constraints
● HTTP functions can only use APIG or APIC triggers.

According to the forwarding protocol between FunctionGraph and APIG/APIC,
a valid HTTP function response must contain body(String), statusCode(int),
headers(Map), and isBase64Encoded(boolean). By default, the response is
encoded using Base64. The default value of isBase64Encoded is true. The
same applies to other frameworks. For details, see Base64 Decoding and
Return Structure.

● By default, port 8000 is enabled for HTTP functions.
● Table 5-13 describes the context methods provided by FunctionGraph.

Example of Using Go to Develop an HTTP Function
Overview

Since HTTP functions do not directly support Go code deployment, this chapter
provides an example of using binary conversion to deploy a Go program on
FunctionGraph.

Procedure

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_1442.html

For details, see Building an HTTP Function with Go.

Sample Code
The code of the source file main.go is as follows:

// main.go
package main

import (
 "fmt"
 "net/http"

 "github.com/emicklei/go-restful"
)

func registerServer() {
 fmt.Println("Running a Go Http server at localhost:8000/")

 ws := new(restful.WebService)
 ws.Path("/")

 ws.Route(ws.GET("/hello").To(Hello))
 c := restful.DefaultContainer
 c.Add(ws)
 fmt.Println(http.ListenAndServe(":8000", c))
}

func Hello(req *restful.Request, resp *restful.Response) {
 resp.Write([]byte("nice to meet you"))
}

func main() {
 registerServer()
}
bootstrap
/opt/function/code/go-http-demo

In main.go, an HTTP server is started using port 8000, and an API whose path is /
hello is registered. When the API is invoked, "nice to meet you" is returned.

Compiling and Packaging
1. On the Linux server, compile the preceding code using the go build -o go-

http-demo main.go command.
2. Compress go-http-demo and bootstrap into a ZIP package named xxx.zip.

Creating an HTTP Function
Create an HTTP function in FunctionGraph, and upload the xxx.zip code package.

Creating an APIG Trigger
Create an APIG trigger, select a proper group and environment, and click OK. (You
can select None for Security Authentication in the test phase.)

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

https://support.huaweicloud.com/intl/en-us/bestpractice-functiongraph/functiongraph_05_1168.html

Figure 5-3 Copying the URL

Invocation Test
Copy the URL generated in Creating an APIG Trigger + Path registered in the
code + /hello to the address box of the browser. The following information is
displayed:

Figure 5-4 Returned result

5.4 Creating an Event Function Using a Container
Image Built with Go

For details about how to use a container image to create and execute an event
function, see Creating an Event Function Using a Container Image and
Executing the Function. This section describes how to create an image using Go
and verify the image locally.

Step 1: Creating an Image
Take the Linux x86 64-bit OS as an example. (There are no specific requirements
for system configurations.)

1. Run the following command to create a folder:
mkdir custom_container_event_example && cd custom_container_event_example

2. Implement an HTTP server to process init and invoke requests and give a
response. Go is used as an example.
Create a server_demo.go file, import the gin dependency package, and
implement a function handler (method POST and path /invoke). Call the init
function to initialize the configuration. Go runs this function automatically.
Example code:
package main

import (
 "fmt"
 "net/http"

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html

 "time"

 "github.com/gin-gonic/gin" // Import the Gin framework.
)

// Initialization function, which is executed when the program is started.
func init() {
 fmt.Println("init in main.go ")
}

// Logger is a middleware function used to record request and response information.
func Logger() gin.HandlerFunc {
 return func(c *gin.Context) {
 start := time.Now()

 reqBody, _ := c.GetRawData()
 fmt.Printf("[INFO] Request: %s %s %s\n", c.Request.Method, c.Request.RequestURI, reqBody)

 c.Next()

 end := time.Now()
 latency := end.Sub(start)
 respBody := string(rune(c.Writer.Size()))
 fmt.Printf("[INFO] Response: %s %s %s (%v)\n", c.Request.Method, c.Request.RequestURI,
respBody, latency)
 }
}

// invoke is a function that processes POST requests sent to the /invoke route.
func invoke(c *gin.Context) {
 println("hello world")
 c.String(http.StatusOK, "*** hello world ***")
 return
}

func main() {
 router := gin.Default() // Create a default Gin router.

 router.Use(Logger()) // Use the Logger middleware.

 router.POST("/invoke", invoke) // Register a route (/invoke) that processes HTTP POST requests.
When a client sends a POST request to /invoke, the Gin framework calls the invoke function to
process the request.
 err := router.Run(":8000") // Start the HTTP server and listen to port 8000.
 if err != nil {
 return
 }
}

3. Execute the following command to compile and generate the server_demo
binary file:
go build server_demo.go

4. Create a Dockerfile and replace server_demo in the Dockerfile with the
compiled file name. The file content is as follows:
FROM ubuntu:22.04

ENV HOME=/home/paas
ENV GROUP_ID=1003
ENV GROUP_NAME=paas_user
ENV USER_ID=1003
ENV USER_NAME=paas_user

RUN mkdir -m 550 ${HOME} && groupadd -g ${GROUP_ID} ${GROUP_NAME} && useradd -u $
{USER_ID} -g ${GROUP_ID} ${USER_NAME}

COPY server_demo ${HOME}

RUN chown -R ${USER_ID}:${GROUP_ID} ${HOME}
RUN chmod -R 775 ${HOME}

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

USER ${USER_NAME}
WORKDIR ${HOME}
EXPOSE 8000
ENTRYPOINT ["./server_demo"]

Table 5-16 Parameter description

Parameter Description

FROM Specifies base image ubuntu:22.04. The base image is
mandatory and its value can be changed.

ENV Sets environment variables HOME (/home/
custom_container), GROUP_NAME and USER_NAME
(custom_container), and USER_ID and GROUP_ID
(1003). These environment variables are mandatory and
their values can be changed.

RUN Executes commands. The format is RUN <command>.
For example, RUN mkdir -m 550 ${HOME} means to
create directory ${HOME} for user ${USER_NAME}
during container building.

COPY Copies files or directories from the build context to the
image. Copy server_demo.go to the ${HOME} directory
of user ${USER_NAME} in the container.

USER Switches to user ${USER_NAME}.

WORKDIR Switches the working directory to the ${HOME}
directory of user ${USER_NAME}.

EXPOSE Informs Docker that the container listens on the
specified network ports at runtime. Expose port 8000 of
the container and do not change it.

ENTRYPOINT Sets the executable command that is run each time a
container starts. Run the ./server_demo command to
start a container.

5. Run the following command to build an image:

docker build -t custom_container_event_example:latest .

In the preceding command, the image name is
custom_container_event_example, the tag is latest, and the period (.)
indicates the directory where the Dockerfile is located. Run the image build
command to pack all files in the directory and send the package to a
container engine to build an image.

Step 2: Performing Local Verification
1. Run the following command to start the Docker container:

docker run -u 1003:1003 -p 8000:8000 custom_container_event_example:latest

2. Open a new Command Prompt, and send a message through port 8000 to
access the /invoke directory specified in the template code.
curl -XPOST -H 'Content-Type: application/json' -d '{"message":"HelloWorld"}' localhost:8000/invoke

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

The following information is returned based on the module code:
*** hello world ***

Step 3: Creating a Function
Once you build the container image locally, you can create a function on the
console.

For details, see Creating an Event Function Using a Container Image and
Executing the Function. Start from Step 3: Upload the Image.

Helpful Links
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

● For details about the syntax and SDK APIs of function development in Go, see
Function Development Overview.

5.5 Creating an HTTP Function Using a Container
Image Built with Go

For details about how to use a container image to create and execute an HTTP
function, see Creating an HTTP Function Using a Container Image and
Executing the Function. This section describes how to create an image using Go
and verify the image locally.

Step 1: Creating an Image
Take the Linux x86 64-bit OS as an example. (There are no specific requirements
for system configurations.)

1. Run the following command to create a folder:
mkdir custom_container_http_example && cd custom_container_http_example

2. Implement an HTTP server to process init and invoke requests and give a
response. Go is used as an example.
Create a server_demo.go file, import the gin dependency package, and
implement a function handler index (method POST and path /index). The
handler can be compiled based on the actual service requirements. Call
the init function to initialize the configuration. Go runs this function
automatically. Example code:
package main

import (
 "fmt"
 "net/http"
 "time"

 "github.com/gin-gonic/gin" // Import the Gin framework.
)

// Initialization function, which is executed when the program is started.
func init() {
 fmt.Println("init in main.go ")
}

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html#section4
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0104.html#section4
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html

// Logger is a middleware function used to record request and response information.
func Logger() gin.HandlerFunc {
 return func(c *gin.Context) {
 start := time.Now()

 reqBody, _ := c.GetRawData()
 fmt.Printf("[INFO] Request: %s %s %s\n", c.Request.Method, c.Request.RequestURI, reqBody)

 c.Next()

 end := time.Now()
 latency := end.Sub(start)
 respBody := string(rune(c.Writer.Size()))
 fmt.Printf("[INFO] Response: %s %s %s (%v)\n", c.Request.Method, c.Request.RequestURI,
respBody, latency)
 }
}

// index is a function that processes POST requests sent to the /index route.
func index(c *gin.Context) {
 println("hello world")
 c.String(http.StatusOK, "*** hello world ***")
 return
}

func main() {
 router := gin.Default() // Create a default Gin router.

 router.Use(Logger()) // Use the Logger middleware.

 router.POST("/index", index) // Register a route (/index) that processes HTTP POST requests. When
a client sends a POST request to /index, the Gin framework calls the index function to process the
request.
 err := router.Run(":8000") // Start the HTTP server and listen to port 8000.
 if err != nil {
 return
 }
}

3. Execute the following command to compile and generate the server_demo
binary file:
go build server_demo.go

4. Create a Dockerfile and replace server_demo in the Dockerfile with the
compiled file name. The file content is as follows:
FROM ubuntu:22.04

ENV HOME=/home/paas
ENV GROUP_ID=1003
ENV GROUP_NAME=paas_user
ENV USER_ID=1003
ENV USER_NAME=paas_user

RUN mkdir -m 550 ${HOME} && groupadd -g ${GROUP_ID} ${GROUP_NAME} && useradd -u $
{USER_ID} -g ${GROUP_ID} ${USER_NAME}

COPY server_demo ${HOME}

RUN chown -R ${USER_ID}:${GROUP_ID} ${HOME}
RUN chmod -R 775 ${HOME}

USER ${USER_NAME}
WORKDIR ${HOME}
EXPOSE 8000
ENTRYPOINT ["./server_demo"]

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

Table 5-17 Parameter description

Parameter Description

FROM Specifies base image ubuntu:22.04. The base image is
mandatory and its value can be changed.

ENV Sets environment variables HOME (/home/
custom_container), GROUP_NAME and USER_NAME
(custom_container), and USER_ID and GROUP_ID
(1003). These environment variables are mandatory and
their values can be changed.

RUN Executes commands. The format is RUN <command>.
For example, RUN mkdir -m 550 ${HOME} means to
create directory ${HOME} for user ${USER_NAME}
during container building.

COPY Copies files or directories from the build context to the
image. Copy server_demo.go to the ${HOME} directory
of user ${USER_NAME} in the container.

USER Switches to user ${USER_NAME}.

WORKDIR Switches the working directory to the ${HOME}
directory of user ${USER_NAME}.

EXPOSE Informs Docker that the container listens on the
specified network ports at runtime. Expose port 8000 of
the container and do not change it.

ENTRYPOINT Sets the executable command that is run each time a
container starts. Run the ./server_demo command to
start a container.

5. Run the following command to build an image:

docker build -t custom_container_http_example:latest .

In the preceding command, the image name is
custom_container_http_example, the tag is latest, and the period (.)
indicates the directory where the Dockerfile is located. Run the image build
command to pack all files in the directory and send the package to a
container engine to build an image.

Step 2: Performing Local Verification
1. Run the following command to start the Docker container:

docker run -u 1003:1003 -p 8000:8000 custom_container_http_example:latest

2. Open a new Command Prompt, and send a message through port 8000 to
access the /invoke directory specified in the template code.
curl -XPOST -H 'Content-Type: application/json' -d '{"message":"HelloWorld"}' localhost:8000/index

The following information is returned based on the module code:
*** hello world ***

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

Step 3: Creating a Function
Once you build the container image locally, you can create a function on the
console.

For details, see Creating an HTTP Function Using a Container Image and
Executing the Function. Start from Step 3: Upload the Image.

Helpful Links
● For more information about function development, such as the supported

runtimes, trigger events, function project packaging specifications, and DLL
referencing, see Function Development Overview.

● For details about the syntax and SDK APIs of function development in Go, see
Function Development Overview.

FunctionGraph
Developer Guide 5 Go

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html#section4
https://support.huaweicloud.com/intl/en-us/qs-functiongraph/functiongraph_04_0103.html#section4

6 C#

6.1 C# Function Development Overview
FunctionGraph supports the following C# runtimes:

● C#(.NET Core 2.1)
● C#(.NET Core 3.1)
● C#(.NET Core 6.0)
● C# (.NET Core 8.0) (only available in ME-Riyadh and TR-Istanbul)

Function Syntax
C# function syntax: Scope Return parameter Function name (User-defined
parameter, Context)

● Scope: It must be defined as public for the function that FunctionGraph
invokes to execute your code.

● Return parameter: user-defined output, which is converted into a character
string and returned as an HTTP response.

● Function name: user-defined function name. The name must be consistent
with that you define when creating a function.

● context: runtime information provided for executing the function. For details,
see the description of SDK APIs.
The HC.Serverless.Function.Common library needs to be referenced when
you deploy a project in FunctionGraph. For details about the
IFunctionContext object, see the context description.
When creating a C# function, you need to define a method as the handler of
the function. The method can access the function by using specified
IFunctionContext parameters. Example:
public Stream handlerName(Stream input,IFunctionContext context)
{
 // TODO
}

For a C# function, the handler must be named in the format of [assembly]::
[namespace].[class name]::[execution function name]. Example:

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

CsharpDemo::CsharpDemo.Program::MyFunc. You can configure or modify the
handler on the Basic Settings page on the FunctionGraph console.

Function Handler

ASSEMBLY::NAMESPACE.CLASSNAME::METHODNAME

● ASSEMBLY: name of the .NET assembly file for your application, for example,
HelloCsharp.

● NAMESPACE and CLASSNAME: names of the namespace and class to which
the handler function belongs.

● METHODNAME: name of the handler function. Example:
Set the handler to HelloCsharp::Example.Hello::Handler when you create a
function.

SDK APIs
● Context APIs

Table 6-1 describes the provided context attributes.

Table 6-1 Context objects

Attribute Description

String RequestId Request ID.

String ProjectId Project ID.

String PackageName Name of the group to which the function
belongs.

String FunctionName Function name.

String FunctionVersion Function version.

Int MemoryLimitInMb Obtains the allocated memory.

Int CpuNumber Obtains CPU usage of a function.

String Accesskey Obtains the AK (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.
FunctionGraph has stopped maintaining the
String AccessKey API in the Runtime SDK.
You cannot use this API to obtain a
temporary AK.

String Secretkey Obtains the SK (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.
FunctionGraph has stopped maintaining the
String SecretKey API in the Runtime SDK.
You cannot use this API to obtain a
temporary SK.

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

Attribute Description

String SecurityAccessKey Obtains the SecurityAccessKey (valid for 24
hours) with an agency. The cache duration is
10 minutes. That is, the same content is
returned within 10 minutes. To use this
method, you need to configure an agency for
the function.

String SecuritySecretKey Obtains the SecuritySecretKey (valid for 24
hours) with an agency. The cache duration is
10 minutes. That is, the same content is
returned within 10 minutes. To use this
method, you need to configure an agency for
the function.

String SecurityToken Obtains the SecurityToken (valid for 24 hours)
with an agency. The cache duration is 10
minutes. That is, the same content is returned
within 10 minutes. To use this method, you
need to configure an agency for the function.

String Token Obtains the token (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.

Int RemainingTimeInMilli-
Seconds

Remaining running time of a function.

String GetUserData(string
key,string defvalue=" ")

Uses keys to obtain the values passed by
environment variables.

● Logging APIs

The following table describes the logging APIs provided in the C# SDK.

Table 6-2 Logging APIs

Method Description

Log(string message) Creates a logger object by using context.
var logger = context.Logger;
logger.Log("hello CSharp runtime
test(v1.0.2)");

Logf(string format,
args ...interface{})

Creates a logger object by using context.
var logger = context.Logger;
var version = "v1.0.2"
logger.Logf("hello CSharp runtime test({0})",
version);

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

6.2 Developing a C# Event Function

6.2.1 Developing a C# Event Function Using IDE
This section describes how to develop a C# event function using IDE. For details
about the C# syntax, initializer and SDK APIs, see C# Function Development
Overview.

Constraints

When calling a function using APIG, isBase64Encoded is valued true by default,
indicating that the request body transferred to FunctionGraph is encoded using
Base64 and must be decoded for processing.

The function must return characters strings by using the following structure.
{
 "isBase64Encoded": true|false,
 "statusCode": httpStatusCode,
 "headers": {"headerName":"headerValue",...},
 "body": "..."
}

Viewing the.NET Version

Run the following command to view the installed .NET version:

dotnet --info

Figure 6-1 Viewing the.NET Version

Step 1: Creating a Project
1. Open the IDE and create a C# compilation project, as shown in Figure 6-2.

Select net6.0 as the framework.

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

Figure 6-2 Creating a project

2. Check the directory after the project is created.

Figure 6-3 Project directory structure

3. Download the .dll file of the function and decompress the .dll file to the
directory shown in Figure 6-4.

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/sdk/csharp/dll.zip

Figure 6-4 Decompressing the .dll file to the directory

4. Edit the ConsoleApp1.csproj file in the project to enable the project to
reference the downloaded .dll file. The following information is added to the
file:
<ItemGroup>
 <Reference Include="HC.Serverless.Function.Common, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null">
 <HintPath>../HC.Serverless.Function.Common.dll</HintPath>
 </Reference>
</ItemGroup>

After the editing is complete, the content of the cspoj file is shown in Figure
6-5.

Figure 6-5 csproj file

5. Edit the Program.cs file in the project and replace the original code in the file
with the following code:
using HC.Serverless.Function.Common;
using System;
using System.IO;
using System.Text;

namespace src
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

 public Stream myFunc(Stream input,IFunctionContext context)
 {
 string payload = "";
 if (input != null && input.Length > 0)
 {
 byte[] buffer = new byte[input.Length];
 input.Read(buffer, 0, (int)(input.Length));
 payload = Encoding.UTF8.GetString(buffer);
 }
 var ms = new MemoryStream();
 using (var sw = new StreamWriter(ms))
 {
 sw.WriteLine("CSharp runtime test(v1.0.2)");
 sw.WriteLine("=====================================");
 sw.WriteLine("Request Id: {0}", context.RequestId);
 sw.WriteLine("Function Name: {0}", context.FunctionName);
 sw.WriteLine("Function Version: {0}", context.FunctionVersion);
 sw.WriteLine("Project: {0}", context.ProjectId);
 sw.WriteLine("Package: {0}", context.PackageName);
 sw.WriteLine("Security Access Key: {0}", context.SecurityAccessKey);
 sw.WriteLine("Security Secret Key: {0}", context.SecuritySecretKey);
 sw.WriteLine("Security Token: {0}", context.SecurityToken);
 sw.WriteLine("Token: {0}", context.Token);
 sw.WriteLine("User data(ud-a): {0}", context.GetUserData("ud-a"));
 sw.WriteLine("User data(ud-notexist): {0}", context.GetUserData("ud-notexist", ""));
 sw.WriteLine("User data(ud-notexist-default): {0}", context.GetUserData("ud-notexist",
"default value"));
 sw.WriteLine("=====================================");

 var logger = context.Logger;
 logger.Logf("Hello CSharp runtime test(v1.0.2)");
 sw.WriteLine(payload);
 }
 return new MemoryStream(ms.ToArray());
 }
 }
}

6. As shown in Figure 6-6, click the compilation button in the IDE to compile the
C# project.

Figure 6-6 C# compilation button

7. Compress all compiled files in the ConsoleApp1\bin\Debug\net6.0 directory
into a .zip file, as shown in Figure 6-7. Do not compress the entire folder.
Ensure that files are displayed after the package is decompressed.

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Figure 6-7 Compressing compiled files

Step 2: Testing the Function
1. Log in to the FunctionGraph console and click Create Function in the upper

right corner.
2. Create a C# event function from scratch and click Create Now as shown

inFigure 6-8. The function details page is displayed.

Figure 6-8 Creating a function

3. Upload the ZIP file compressed in 7. After the code package is uploaded, it
will be automatically deployed on the FunctionGraph console, as shown in
Figure 6-9.

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

Figure 6-9 Uploading code

4. Choose Configuration > Basic Settings, set Handler to
ConsoleApp1::src.Program::myFunc, and click Save, as shown in Figure 6-10.

NO TE

The file generated after the C# project in the sample project package is compiled is
ConsoleApp1.dll. Therefore, the assembly name of the function handler is
ConsoleApp1.

Figure 6-10 Configuring the function handler

5. Return to the Code tab page, click Test to configure a blank test event.

6. Select the created blank test event, as shown in Figure 6-11, and click Test to
view the function execution result.

Figure 6-11 Testing the function

Execution Result

The execution result consists of the function output, summary, and log output.

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

Table 6-3 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage and errorType is
returned. The format is as follows:
{
 "errorMessage": "",
 "errorType": ""
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

6.2.2 JSON Serialization and Deserialization

6.2.2.1 Developing a C# Function Using .NET Core CLI
C# supports JSON serialization and deserialization interfaces and provides the
HC.Serverless.Function.Common.JsonSerializer.dll file.

The interfaces are as follows:

T Deserialize<T>(Stream ins): Deserializes data into objects of function
programs.

Stream Serialize<T>(T value): Serializes data to the returned response payload.

The following shows how to create a project named test based on .NET Core 6.0.
The procedure is similar for other versions. The .NET SDK has been installed in the
execution environment.

Creating a Project
1. Run the following command to create the /tmp/csharp/projects /tmp/

csharp/release directory:
mkdir -p /tmp/csharp/projects;mkdir -p /tmp/csharp/release

2. Run the following command to go to the /tmp/csharp/projects/ directory:
cd /tmp/csharp/projects/

3. Create the project file test.csproj with the following content:
<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

 <TargetFramework>net6.0</TargetFramework>
 <RootNamespace>test</RootNamespace>
 <AssemblyName>test</AssemblyName>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="HC.Serverless.Function.Common">
 <HintPath>HC.Serverless.Function.Common.dll</HintPath>
 </Reference>
 <Reference Include="HC.Serverless.Function.Common.JsonSerializer">
 <HintPath> HC.Serverless.Function.Common.JsonSerializer.dll</HintPath>
 </Reference>
 </ItemGroup>
</Project>

Generating a Code Library
1. Download the dll files.

Upload the HC.Serverless.Function.Common.dll,
HC.Serverless.Function.Common.JsonSerializer.dll, and Newtonsoft.Json.dll
files in the package to the /tmp/csharp/projects/ directory.

2. Create the Class1.cs file in the /tmp/csharp/projects/ directory. The code is
as follows:
using HC.Serverless.Function.Common;
using System;
using System.IO;

namespace test
{
 public class Class1
 {
 public Stream ContextHandlerSerializer(Stream input, IFunctionContext context)
 {
 var logger = context.Logger;
 logger.Logf("CSharp runtime test(v1.0.2)");
 JsonSerializer test = new JsonSerializer();
 TestJson Testjson = test.Deserialize<TestJson>(input);
 if (Testjson != null)
 {
 logger.Logf("json Deserialize KetTest={0}", Testjson.KetTest);

 }
 else
 {
 return null;
 }

 return test.Serialize<TestJson>(Testjson);
 }

 public class TestJson
 {
 public string KetTest { get; set; }//Define the attribute of the serialization class as KetTest.

 }
 }
}

3. Run the following command to generate a code library:
dotnet build /tmp/csharp/projects/test.csproj -c Release -o /tmp/csharp/release

NO TE

.NET directory: /home/tools/dotnetcore-sdk/dotnet-sdk-2.1.302-linux-x64/dotnet

4. Run the following command to go to the /tmp/csharp/release directory:
cd /tmp/csharp/release

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/sdk/csharp/dll.zip

5. View the compiled .dll files in the /tmp/csharp/release directory.
-rw-r--r-- 1 root root 468480 Jan 21 16:40 Newtonsoft.Json.dll
-rw-r--r-- 1 root root 5120 Jan 21 16:40 HC.Serverless.Function.Common.JsonSerializer.dll
-rw-r--r-- 1 root root 5120 Jan 21 16:40 HC.Serverless.Function.Common.dll
-rw-r--r-- 1 root root 232 Jan 21 17:10 test.pdb
-rw-r--r-- 1 root root 3584 Jan 21 17:10 test.dll
-rw-r--r-- 1 root root 1659 Jan 21 17:10 test.deps.json

6. Create the test.runtimeconfig.json file in the /tmp/csharp/release directory.
The file content is as follows:
{
 "runtimeOptions": {
 "framework": {
 "name": "Microsoft.NETCore.App",
 "version": "6.0.0"
 }
 }
}

7. Run the following command to package the test.zip file in the /tmp/csharp/
release directory:
zip -r test.zip ./*

Test Example
1. Create a C# (.NET 6.0) event function from scratch on the FunctionGraph

console and upload the test.zip file, as shown in Figure 6-12.

Figure 6-12 Uploading the code package

2. Configure a test event, as shown in Figure 6-13. The key must be set to
KetTest, and the value can be customized. (The test string must be in JSON
format.)

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

Figure 6-13 Configuring a test event

NO TE

The attribute of the serialization class must be defined as KetTest.

3. Click Test and view the execution result.

6.2.2.2 Developing a C# Function Using Visual Studio
C# supports JSON serialization and deserialization interfaces and provides the
HC.Serverless.Function.Common.JsonSerializer.dll file.

The interfaces are as follows:

T Deserialize<T>(Stream ins): Deserializes data into objects of function
programs.

Stream Serialize<T>(T value): Serializes data to the returned response payload.

This section uses Visual Studio 2022 as an example to describe how to create
a .NET Core 6.0 ClassLibrary project. The procedure for other runtime versions is
similar.

Step 1: Creating a Project
1. In Visual Studio, select Create a new project, select Class Library as shown in

Figure 6-14, click Next, and select .NET 6.0 to create a project.

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

Figure 6-14 Creating a project

2. As shown in Figure 6-15, right-click the ClassLibrary project in the Solution
Explorer and choose Add Project Reference from the shortcut menu.

Figure 6-15 Adding a reference

3. Choose Browse, click Browse (B), select the three libraries in the
downloaded .dll file for reference, and click OK.

The .dll file contains three libraries: HC.Serverless.Function.Common.dll,
HC.Serverless.Function.Common.JsonSerializer.dll and Newtonsoft.Json.dll.

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/sdk/csharp/dll.zip

4. View the references, as shown in Figure 6-16.

Figure 6-16 References

Step 2: Packaging Code
Sample code:

using HC.Serverless.Function.Common;
using System;
using System.IO;

namespace ClassLibrary2
{
 public class Class1
 {
 public Stream ContextHandlerSerializer(Stream input, IFunctionContext context)
 {
 var logger = context.Logger;
 logger.Logf("CSharp runtime test(v1.0.2)");
 JsonSerializer test = new JsonSerializer();
 TestJson Testjson = test.Deserialize<TestJson>(input);
 if (Testjson != null)
 {
 logger.Logf("json Deserialize KetTest={0}", Testjson.KetTest);
 }

 return test.Serialize<TestJson>(Testjson);
 }

 public class TestJson
 {
 public string KetTest { get; set; }//Define the attribute of the serialization class as KetTest.

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

 }
 }
}

1. As shown in Figure 6-17, choose Build > Build Solution from the menu bar
and copy the path of the generated .dll file in the output box.

Figure 6-17 Generating files

2. View the generated file in the local folder, as shown in Figure 6-18.

Figure 6-18 Files

3. Create the ClassLibrary.runtimeconfig.json file in the folder and add the
following content to the file: After the operation is complete, there are seven
files in total.
{
 "runtimeOptions": {
 "framework": {
 "name": "Microsoft.NETCore.App",
 "version": "6.0.0"
 }
 }
}

NO TE

● The name of the *.runtimeconfig.json file is the name of an assembly.

● The Version parameter in the file indicates the version number of the target
framework.

4. Compress the files in the folder into a .zip package. Do not compress the
entire folder. Ensure that seven files are displayed after the package is
decompressed.

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

Step 3: Testing the Function
1. On the FunctionGraph console, create a C# (.NET Core 6.0) event function

from scratch and upload the ZIP code package created in 4, as shown in
Figure 6-19.

Figure 6-19 Uploading the code package

2. Choose Configuration > Basic Settings, set Handler to
ClassLibrary2::ClassLibrary2.Class1::ContextHandlerSerializer, and click
Save, as shown in Figure 6-20.

Figure 6-20 Configuring the function handler

3. Return to the Code tab page, click Test to configure a test event. As shown in
Figure 6-21, change key to KetTest to identify the corresponding value.

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

Figure 6-21 Configuring a test event

NO TE

The attribute of the serialization class must be defined as KetTest.

4. Click Test and view the execution result.

Figure 6-22 Viewing the execution result

FunctionGraph
Developer Guide 6 C#

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

7 PHP

7.1 PHP Function Development Overview
FunctionGraph supports the following PHP runtimes:

● PHP 7.3
● PHP 8.3

Function Syntax
Use the following syntax when creating a handler function in PHP:
function handler($event, $context)

● $handler: name of the function that FunctionGraph invokes to execute your
code. The name must be consistent with that you define when creating a
function.

● $event: event parameter defined for the function. The parameter is in JSON
format.

● $context: runtime information provided for executing the function. For
details, see SDK APIs.

● Function handler: index.handler.

The PHP function handler is in the format of [File name].[Function name]. You
can configure or modify the handler on the FunctionGraph console.

PHP Initializer
For details about the initializer, see Initializer.

The initializer format of a PHP function is [File name].[Initializer name].

For example, if the initializer is named main.my_initializer, FunctionGraph loads
the my_initializer function defined in the main.php file.

To use PHP to build initialization logic, define a PHP function as the initializer. The
following is a simple initializer:

<?php
Function my_initializer($context) {

FunctionGraph
Developer Guide 7 PHP

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

 echo 'hello world' . PHP_EOL;
 }
?>

● Function name
The function name my_initializer must be the initializer function name
specified for a function.
For example, if the initializer is named main.my_initializer, FunctionGraph
loads the my_initializer function defined in the main.php file.

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

SDK APIs
The following table describes the context methods provided by FunctionGraph.

Table 7-1 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeIn-
MilliSeconds ()

Obtains the remaining running time of a function.

getAccessKey() Obtains the AK (valid for 24 hours) with an agency. If
you use this method, you need to configure an agency
for the function.
FunctionGraph has stopped maintaining the
getAccessKey API in the Runtime SDK. You cannot
use this API to obtain a temporary AK.

getSecretKey() Obtains the SK (valid for 24 hours) with an agency. If
you use this method, you need to configure an agency
for the function.
FunctionGraph has stopped maintaining the
getSecretKey API in the Runtime SDK. You cannot
use this API to obtain a temporary SK.

getSecurityAcces-
sKey()

Obtains the SecurityAccessKey (valid for 24 hours) with
an agency. The cache duration is 10 minutes. That is,
the same content is returned within 10 minutes. To use
this method, you need to configure an agency for the
function.

getSecuritySecret-
Key()

Obtains the SecuritySecretKey (valid for 24 hours) with
an agency. The cache duration is 10 minutes. That is,
the same content is returned within 10 minutes. To use
this method, you need to configure an agency for the
function.

FunctionGraph
Developer Guide 7 PHP

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

Method Description

getSecurityToken() Obtains the SecurityToken (valid for 24 hours) with an
agency. The cache duration is 10 minutes. That is, the
same content is returned within 10 minutes. To use this
method, you need to configure an agency for the
function.

getUserData(string
key)

Uses keys to obtain the values passed by environment
variables.

getFunctionName() Obtains the name of a function.

getRunningTimeIn-
Seconds ()

Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() Obtains CPU usage of a function.

getPackage() Obtains a function group.

getToken() Obtains the token (valid for 24 hours) with an agency.
If you use this method, you need to configure an
agency for the function.

getLogger() Obtains the logger method provided by the context
and returns a log output class. Logs are output in the
format of Time-Request ID-Content by using the info
method.
For example, use the info method to output logs:
logg = context.getLogger()$
$logg->info("hello")

getAlias() Obtains function alias.

7.2 Developing a PHP Event Function
You can develop a PHP event function locally and upload the code file, or create a
function on the FunctionGraph console and edit code online.

For details about the syntax and SDK APIs of PHP functions, see PHP Function
Development Overview.

Constraints
● FunctionGraph can return only the following types of values:

– Null: The HTTP response body is empty.
– string: The content in this string is the body of an HTTP response.

FunctionGraph
Developer Guide 7 PHP

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

– Other: FunctionGraph returns a value for JSON encoding, and uses the
encoded object as the body of an HTTP response. The Content-Type
header of the HTTP response is set to text/plain.

● For details about the constraints for the APIG event source, see Base64
Decoding and Response Structure.

● In this example, the function project files are saved under the ~/Code/
directory. Select and package all files under the directory to ensure that the
index.php file, the handler of your FunctionGraph function, is under the root
directory when the fss_examples_php7.3.zip file is decompressed.

Developing a PHP Function

Step 1 Create a function.

1. Write code for printing text helloworld.
Open the text editor, compile a HelloWorld function, and save the code file as
helloworld.php. The code is as follows:
<?php
function printhello() {
echo 'Hello world!';
}

2. Define a FunctionGraph function.
Open the text editor, define a function, and save the function file as
index.php under the same directory as the helloworld.php file. The function
code is as follows:
<?php
include_once 'helloworld.php';

function handler($event, $context) {
 $output = json_encode($event);
 printhello();
 return $output;
}

Step 2 Package the project files.

After creating the function project, you get the following directory. Select all files
under the directory and package them into the fss_examples_php7.3.zip file, as
shown in Figure 7-1.

Figure 7-1 Packaging the project files

Step 3 Create a FunctionGraph function and upload the code package.

FunctionGraph
Developer Guide 7 PHP

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

Log in to the FunctionGraph console, create a PHP function, and upload the
fss_examples_php7.3.zip file, as shown in Figure 7-2.

Figure 7-2 Uploading the code package

● The index of the handler must be consistent with the name of the file created
in Step 1.2, because the file name will help to locate the function file.

● The handler is a function name, which must be the same as that in the
index.php file created in Step 1.2.

After you upload the fss_examples_php7.3.zip file to OBS, when the function is
triggered, FunctionGraph decompresses the file to locate the function file through
index and locate the function defined in the index.php file through handler, and
then executes the function.

NO TE

Modifying the function handler:

In the navigation pane on the left of the FunctionGraph console, choose Functions >
Function List. Click the name of the function to be set. On the function details page that is
displayed, choose Configuration > Basic Settings and set the Handler parameter, as
shown in Figure 7-3.

Figure 7-3 Function handler

Step 4 Test the function.

1. Create a test event.
On the function details page that is displayed, click Configure Test Event.
Configure the test event information, as shown in Figure 7-4, and then click
Create.

FunctionGraph
Developer Guide 7 PHP

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_php7.3.zip

Figure 7-4 Configuring a test event

2. On the function details page, select the configured test event, and click Test.

Step 5 View the function execution result.

The function execution result consists of three parts: function output (returned by
return), summary, and logs (output by using the echo method).

----End

Execution Result

The execution result consists of the function output, summary, and log output.

Table 7-2 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage, errorType, and
stackTrace is returned. The format is
as follows:
{
 "errorMessage": "",
 "errorType": "",
 "stackTrace": {}
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.
stackTrace: Stack error information
returned by the runtime.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

FunctionGraph
Developer Guide 7 PHP

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

Parame
ter

Successful Execution Failed Execution

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

7.3 PHP Function Template
The following is a sample code template of a PHP function:

<?php
/*function initializer($context) {
 $output = 'hello Initializer';
 return $output;
}*/
function handler($event, $context) {
 $output = array(
 "statusCode" => 200,
 "headers" => array(
 "Content-Type" => "application/json",
),
 "isBase64Encoded" => false,
 "body" => json_encode($event),
);
 return $output;
}
?>

When you create an empty PHP event function on the FunctionGraph console, the
preceding sample code is deployed by default.

7.4 Creating a Dependency for a PHP Function

Setting Up the EulerOS Environment

You are advised to create function dependencies in Huawei Cloud EulerOS 2.0.
If other OSs are used, the dynamic link library may not be found due to the
differences between underlying dependency libraries.

EulerOS is an enterprise-grade Linux OS based on open-source technology. It
features high security, scalability, and performance, meeting customers'
requirements for IT infrastructure and cloud computing services.

You can set up the Huawei Cloud EulerOS environment using the following
methods:

● Buy a EulerOS ECS on Huawei Cloud by referring to Purchasing and Logging
In to a Linux ECS. On the Configure Basic Settings page, select Public
Image, and select Huawei Cloud EulerOS and an image version.

● Download the EulerOS image, and use virtualization software to set up the
EulerOS VM on a local PC.

FunctionGraph
Developer Guide 7 PHP

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

https://support.huaweicloud.com/intl/en-us/productdesc-hce/hce_01_0001.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

Constraints
If the modules to be installed need dependencies such as .dll, .so, and .a, archive
them to a .zip package.

Creating a Dependency for a PHP Function
Before creating a dependency, ensure that PHP matching the function runtime has
been installed in the environment. The following uses PHP 7.3 as an example to
describe how to install the protobuf3.19 dependency using Composer. Composer
has been installed in the default environment. The procedure is the same for other
PHP versions.

Step 1 Create the composer.json file with the following content:
{
 "require": {
 "google/protobuf": "^3.19"
 }
}

Step 2 Run the following command:
Composer install

The vendor folder is generated with the autoload.php, composer, and google
subfolders in the current directory.

Step 3 Run the following command to generate a ZIP package:
zip –rq vendor.zip vendor

----End

If multiple dependencies need to be packaged, specify them in the composer.json
file, compress the vendor folder into a ZIP file and upload it.

NO TE

In PHP projects, third-party dependencies downloaded using Composer need to be loaded
using require "./vendor/autoload.php". By default, FunctionGraph stores the
decompressed files in a directory at the same level as the project code directory.

FunctionGraph
Developer Guide 7 PHP

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

8 Custom Runtime

Scenario

A runtime runs the code of a function, reads the handler name from an
environment variable, and reads invocation events from the runtime APIs of
FunctionGraph. The runtime passes event data to the function handler and returns
the response from the handler to FunctionGraph.

FunctionGraph supports custom runtimes. You can use an executable file named
bootstrap to include a runtime in your function deployment package. The runtime
runs the function's handler method when the function is invoked.

Your runtime runs in the FunctionGraph execution environment. It can be a shell
script or a binary executable file that is compiled in Linux.

Constraints
● Only ZIP packages can be uploaded using custom runtimes. All dependencies

must be included in the ZIP package.

● The bootstrap file must be in the root directory of the ZIP package. Ensure
that an executable file is generated after the ZIP package is decompressed.

● If you edit code in Go, zip the compiled file, and ensure that the name of the
dynamic library file is consistent with the plugin name of the handler. For
example, if the name of the dynamic library file is testplugin.so, set the
handler name to testplugin.Handler.

Runtime File bootstrap

If there is a file named bootstrap in your function deployment package,
FunctionGraph executes that file. If the bootstrap file is not found or not
executable, your function will return an error when invoked.

The runtime code is responsible for completing initialization tasks. It processes
invocation events in a loop until it is terminated.

The initialization tasks run once for each instance of the function to prepare the
environment for handling invocations.

FunctionGraph
Developer Guide 8 Custom Runtime

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

Runtime APIs
FunctionGraph provides HTTP runtime APIs to receive function invocation events
and returns response data in the execution environment.

● Next Invocation
Method – Get
Path – http://$RUNTIME_API_ADDR/v1/runtime/invocation/request
This API is used to retrieve an invocation event. The response body contains
the event data. The following table describes additional data about the
invocation contained in the response header.

Table 8-1 Response header information

Parameter Description

X-Cff-Request-Id Request ID.

X-CFF-Access-Key AK of the account. An agency must
be configured for the function if this
variable is used.

X-CFF-Auth-Token Token of the account. An agency
must be configured for the function
if this variable is used.

X-CFF-Invoke-Type Invocation type of the function.

X-CFF-Secret-Key SK of the account. An agency must
be configured for the function if this
variable is used.

X-CFF-Security-Token Security token of the account. An
agency must be configured for the
function if this variable is used.

● Invocation Response

Method – POST
Path – http://$RUNTIME_API_ADDR/v1/runtime/invocation/response/
$REQUEST_ID
This API is used to send a successful invocation response to FunctionGraph.
After the runtime invokes the function handler, it publishes the response from
the function to the invocation response path.

● Invocation Error
Method – POST
Path – http://$RUNTIME_API_ADDR/v1/runtime/invocation/error/
$REQUEST_ID
$REQUEST_ID is the value of variable X-Cff-Request-Id in the header of an
event retrieval response. For more information, see Table 8-1.
$RUNTIME_API_ADDR is a system environment variable. For more
information, see Table 8-2.

FunctionGraph
Developer Guide 8 Custom Runtime

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

This API is used to send an error invocation response to FunctionGraph. After
the runtime invokes the function handler, it publishes the response from the
function to the invocation response path.

Runtime Environment Variables
You can use both custom and runtime environment variables in function code.
Table 8-2 lists the runtime environment variables that are used in the
FunctionGraph execution environment.

Table 8-2 Runtime environment variables

Key Value Description

RUNTIME_PROJECT_ID projectID

RUNTIME_FUNC_NAME Function name

RUNTIME_FUNC_VERSION Function version

RUNTIME_PACKAGE App to which the function belongs

RUNTIME_HANDLER Function handler

RUNTIME_TIMEOUT Function timeout

RUNTIME_USERDATA Value passed through an environment
variable

RUNTIME_CPU Number of allocated CPU cores

RUNTIME_MEMORY Allocated memory

RUNTIME_CODE_ROOT Directory that stores the function code

RUNTIME_API_ADDR Host IP address and port of a custom
runtime API

The value of a custom environment variable can be retrieved in the same way as
the value of a FunctionGraph environment variable.

Example Description
This example contains one file called bootstrap. The file is implemented in Bash.
The runtime loads function script from the deployment package. It uses two
variables to find the script.

The bootstrap file is as follows:

#!/bin/sh
set -o pipefail
#Processing requests loop
while true
do
HEADERS="$(mktemp)"
 # Get an event
 EVENT_DATA=$(curl -sS -LD "$HEADERS" -X GET "http://$RUNTIME_API_ADDR/v1/runtime/invocation/

FunctionGraph
Developer Guide 8 Custom Runtime

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

request")
 # Get request id from response header
 REQUEST_ID=$(grep -Fi x-cff-request-id "$HEADERS" | tr -d '[:space:]' | cut -d: -f2)
 if [-z "$REQUEST_ID"]; then
 continue
 fi
 # Process request data
 RESPONSE="Echoing request: hello world!"
 # Put response
 curl -X POST "http://$RUNTIME_API_ADDR/v1/runtime/invocation/response/$REQUEST_ID" -d
"$RESPONSE"
done

After loading the script, the runtime processes invocation events in a loop until it
is terminated. It uses the API to retrieve invocation events from FunctionGraph,
passes the events to the handler, and then sends responses back to
FunctionGraph.

To obtain the request ID, the runtime saves the API response header in a
temporary file, and then reads the request ID from the x-cff-request-id header
field. The runtime processes the retrieved event data and sends a response back to
FunctionGraph.

The following is an example of source code in Go. It can be executed only after
compilation.
package main

import (
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "io/ioutil"
 "log"
 "net"
 "net/http"
 "os"
 "strings"
 "time"
)

var (
 getRequestUrl = os.ExpandEnv("http://${RUNTIME_API_ADDR}/v1/runtime/invocation/request")
 putResponseUrl = os.ExpandEnv("http://${RUNTIME_API_ADDR}/v1/runtime/invocation/response/
{REQUEST_ID}")
 putErrorResponseUrl = os.ExpandEnv("http://${RUNTIME_API_ADDR}/v1/runtime/invocation/error/
{REQUEST_ID}")
 requestIdInvalidError = fmt.Errorf("request id invalid")
 noRequestAvailableError = fmt.Errorf("no request available")
 putResponseFailedError = fmt.Errorf("put response failed")
 functionPackage = os.Getenv("RUNTIME_PACKAGE")
 functionName = os.Getenv("RUNTIME_FUNC_NAME")
 functionVersion = os.Getenv("RUNTIME_FUNC_VERSION")

 client = http.Client{
 Transport: &http.Transport{
 DialContext: (&net.Dialer{
 Timeout: 3 * time.Second,
 }).DialContext,
 },
 }
)

func main() {
 // main loop for processing requests.
 for {
 requestId, header, payload, err := getRequest()

FunctionGraph
Developer Guide 8 Custom Runtime

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

 if err != nil {
 time.Sleep(50 * time.Millisecond)
 continue
 }

 result, err := processRequestEvent(requestId, header, payload)
 err = putResponse(requestId, result, err)
 if err != nil {
 log.Printf("put response failed, err: %s.", err.Error())
 }
 }
}

// event processing function
func processRequestEvent(requestId string, header http.Header, evtBytes []byte) ([]byte, error) {
 log.Printf("processing request '%s'.", requestId)
 result := fmt.Sprintf("function: %s:%s:%s, request id: %s, headers: %+v, payload: %s", functionPackage,
functionName,
 functionVersion, requestId, header, string(evtBytes))

 var event FunctionEvent
 err := json.Unmarshal(evtBytes, &event)
 if err != nil {
 return (&ErrorMessage{ErrorType: "invalid event", ErrorMessage: "invalid json formated
event"}).toJsonBytes(), err
 }

 return (&APIGFormatResult{StatusCode: 200, Body: result}).toJsonBytes(), nil
}

func getRequest() (string, http.Header, []byte, error) {
 resp, err := client.Get(getRequestUrl)
 if err != nil {
 log.Printf("get request error, err: %s.", err.Error())
 return "", nil, nil, err
 }
 defer resp.Body.Close()

 // get request id from response header
 requestId := resp.Header.Get("X-CFF-Request-Id")
 if requestId == "" {
 log.Printf("request id not found.")
 return "", nil, nil, requestIdInvalidError
 }

 payload, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 log.Printf("read request body error, err: %s.", err.Error())
 return "", nil, nil, err
 }

 if resp.StatusCode != 200 {
 log.Printf("get request failed, status: %d, message: %s.", resp.StatusCode, string(payload))
 return "", nil, nil, noRequestAvailableError
 }

 log.Printf("get request ok.")
 return requestId, resp.Header, payload, nil
}

func putResponse(requestId string, payload []byte, err error) error {
 var body io.Reader
 if payload != nil && len(payload) > 0 {
 body = bytes.NewBuffer(payload)
 }

 url := ""
 if err == nil {
 url = strings.Replace(putResponseUrl, "{REQUEST_ID}", requestId, -1)

FunctionGraph
Developer Guide 8 Custom Runtime

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

 } else {
 url = strings.Replace(putErrorResponseUrl, "{REQUEST_ID}", requestId, -1)
 }

 resp, err := client.Post(strings.Replace(url, "{REQUEST_ID}", requestId, -1), "", body)
 if err != nil {
 log.Printf("put response error, err: %s.", err.Error())
 return err
 }
 defer resp.Body.Close()

 responsePayload, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 log.Printf("read request body error, err: %s.", err.Error())
 return err
 }

 if resp.StatusCode != 200 {
 log.Printf("put response failed, status: %d, message: %s.", resp.StatusCode, string(responsePayload))
 return putResponseFailedError
 }

 return nil
}

type FunctionEvent struct {
 Type string `json:"type"`
 Name string `json:"name"`
}

type APIGFormatResult struct {
 StatusCode int `json:"statusCode"`
 IsBase64Encoded bool `json:"isBase64Encoded"`
 Headers map[string]string `json:"headers,omitempty"`
 Body string `json:"body,omitempty"`
}

func (result *APIGFormatResult) toJsonBytes() []byte {
 data, err := json.MarshalIndent(result, "", " ")
 if err != nil {
 return nil
 }

 return data
}

type ErrorMessage struct {
 ErrorType string `json:"errorType"`
 ErrorMessage string `json:"errorMessage"`
}

func (errMsg *ErrorMessage) toJsonBytes() []byte {
 data, err := json.MarshalIndent(errMsg, "", " ")
 if err != nil {
 return nil
 }

 return data
}

Table 8-3 describes the environment variables used in the preceding code.

Table 8-3 Runtime environment variables

Environment Variable Description

RUNTIME_FUNC_NAME Function name

FunctionGraph
Developer Guide 8 Custom Runtime

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

Environment Variable Description

RUNTIME_FUNC_VERSION Function version

RUNTIME_PACKAGE App to which the function belongs

FunctionGraph
Developer Guide 8 Custom Runtime

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

9 Development Tools

9.1 FunctionGraph and IaC

Combination of FunctionGraph and IaC
Most FunctionGraph functions do not run independently, but work with storage,
gateways, databases, and message queues to form serviceless applications.
Infrastructure as code (IaC) automates the frequent deployments and updates of
functions and triggers. This approach shortens the development cycle, simplifies
configuration management, and maintains the consistency of resource
deployment.

Suitable IaC Tools for FunctionGraph
Resource Formation Service (RFS) is a new final-state cloud resource
orchestration engine that fully supports Terraform (HCL and Provider), the
industry's de facto standard for infrastructure as code. It automatically builds
cloud resources in batches based on open ecosystem templates that use the
HashiCorp Configuration Language (HCL) syntax. With RFS, you can create,
manage, and upgrade cloud resources (such as FunctionGraph functions, APIG
gateways, and database instances) efficiently, securely, and consistently.

Getting Started with RFS for FunctionGraph

Step 1 Create the Python script file index.py with the following content:
-*- coding:utf-8 -*-
import json
def handler (event, context):
 return {
 "statusCode": 200,
 "isBase64Encoded": False,
 "body": json.dumps(event),
 "headers": {
 "Content-Type": "application/json"
 }
 }

Step 2 Compress index.py into index.zip, upload the ZIP file to an OBS bucket, and
obtain the file's object link in the bucket.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

https://support.huaweicloud.com/intl/en-us/productdesc-aos/rf_02_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/en-us_topic_0045853663.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0319.html

Step 3 Create the variables.tf file using the following content to define the parameters
to be used in your RFS template.
variable "enterprise_project_id" {
 type = string
 description = " Specifies enterprise_project_id"
 default = "0"
}
variable "agency_name" {
 type = string
 description = " Specifies the agency to which the function belongs."
 default = ""
}
variable "region" {
 type = string
 description = " Specifies the region."
 default = "cn-north-7"
}
variable "code_url" {
 type = string
 description = "code_url"
}
variable "apig_id" {
 type = string
 description = "apig_id"
 default = ""
}

Step 4 Create the RFS template file main.tf using the following content to define
functions and triggers.
variable "enterprise_project_id" {
 type = string
 description = " Specifies enterprise_project_id"
 default = "0"
}
variable "agency_name" {
 type = string
 description = " Specifies the agency to which the function belongs."
 default = ""
}
variable "region" {
 type = string
 description = " Specifies the region."
 default = "cn-north-7"
}
variable "code_url" {
 type = string
 description = "code_url"
}
variable "apig_id" {
 type = string
 description = "apig_id"
 default = ""
}

Step 5 Compress main.tf and variables.tf into the components.zip file.

Step 6 Log in to the RFS console, and choose Stacks > Create Stack as shown in Figure
9-1. For details, see Creating a Stack.

Figure 9-1 RFS console

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

https://support.huaweicloud.com/intl/en-us/usermanual-aos/rf_04_0003.html

Step 7 Set parameters as shown in Figure 9-2, and upload components.zip. Then click
Next.

Figure 9-2 Setting parameters

Step 8 On the Configure Parameters page, set the following parameters, and click Next.
● enterprise_project_id: enterprise project ID
● agency_name: function agency name
● region: region ID. Obtain it from Regions and Endpoints.
● code_url: OBS object link obtained in step 2
● apig_id: APIG gateway ID

Step 9 On the Configure Stack page, specify an IAM agency, retain the default values for
other parameters, and click Next to confirm the deployment of this stack. The
specified function and resource are automatically created on the FunctionGraph
console.

Step 10 Log in to the FunctionGraph console, and click the function name in the function
list to go to the details page. Choose Configuration > Triggers, locate the APIG
trigger, copy its calling URL, and paste the URL into your browser or run the
following curl command.
curl -s <Trigger_Invoke_URL> # Replace <Trigger_Invoke_URL> with the calling URL of your APIG trigger.

The response is a JSON representation of the selected attributes in the original
event object. It contains information about the request sent to the APIG endpoint.
The following is an example response:

HTTP/1.1 200 OK
Content-Length: 658
Connection: keep-alive
Content-Type: application/json
Date: Wed, 12 Mar 2025 08:59:18 GMT
Server: api-gateway
Strict-Transport-Security: max-age=31536000; includeSubdomains;
X-Apig-Latency: 52
X-Apig-Ratelimit-Api: remain:97,limit:100,time:1 minute
X-Apig-Ratelimit-Api: remain:29973,limit:30000,time:1 second
X-Apig-Ratelimit-Api-Allenv: remain:199,limit:200,time:1 second
X-Apig-Ratelimit-Api-Allenv: remain:29973,limit:30000,time:1 second
X-Apig-Ratelimit-User: remain:3995,limit:4000,time:1 second
X-Apig-Upstream-Latency: 14
X-Cff-Billing-Duration: 1
X-Cff-Invoke-Summary:
{"funcDigest":"e6e9c99b8f5b9d6f9408d5210263330","duration":0.756,"billingDuration":1,"memorySize":128,
"memoryUsed":33.207,"podName":"pool22-300-128-fusion-844bdc7755-
bh55w","gpuMemorySize":0,"ephemeralStorage":512}
X-Cff-Request-Id: b43781ee-49f3-4762-8c24-236c718d3391

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

https://developer.huaweicloud.com/intl/en-us/endpoint?FunctionGraph
https://console-intl.huaweicloud.com/functiongraph/?locale=en-us

X-Content-Type-Options: nosniff
X-Download-Options: noopen
X-Frame-Options: SAMEORIGIN
X-Func-Err-Code: 0
X-Is-Func-Err: false
X-Request-Id: 90a48d7a4c699780579f4edc8983cdaf
X-Xss-Protection: 1; mode=block;

{"requestContext": {"requestId": "90a48d7a4c699780579f4edc8983cdaf", "apiId":
"01127600bb9f4d2ca8e532d1c378d8c8", "stage": ":DEBUG"}, "queryStringParameters": {}, "path": "/nxy-
sasa", "httpMethod": "GET", "isBase64Encoded": true, "headers": {"host":
"47f32d1efa1742f5a7ee5b720ca9c4a5.apig.cn-east-3.huaweicloudapis.com", "content-type": "application/
json", "x-forwarded-host": "47f32d1efa1742f5a7ee5b720ca9c4a5.apig.cn-east-3.huaweicloudapis.com",
"user-agent": "APIGatewayDebugClient/1.0", "x-forwarded-port": "443", "x-forwarded-proto": "https", "x-
request-id": "90a48d7a4c699780579f4edc8983cdaf", "x-apig-mode": "debug"}, "body": "",
"pathParameters": {}}

----End

9.2 Local Debugging with VSCode
Introduction

Huawei Cloud FunctionGraph is a Visual Studio Code (VSCode) plug-in of Huawei
Cloud serverless products. With this plug-in, you can:

● Quickly create local functions.
● Run and debug local functions and deploy them to the cloud.
● Pull the function list from the cloud, call cloud functions, and upload ZIP

packages to the cloud.

Prerequisites
You have downloaded the VSCode tool (later than 1.63.0) and installed it.

Installing the Plug-in
1. Open VSCode, search for Huawei Cloud FunctionGraph in the app store, and

install it.

Figure 9-3 Searching for and installing Huawei Cloud FunctionGraph

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

https://code.visualstudio.com/

2. After the installation is successful, Huawei Cloud FunctionGraph is displayed
in the plug-in list.

Figure 9-4 Installed plug-ins

Logging In to FunctionGraph Plug-in
1. Click the Huawei Cloud FunctionGraph plug-in icon, click the login link, and

select a login mode. If you select login with AK/SK, obtain an AK/SK. For
details, see Creating an Access Key.

2. Select a region to view function information.

3. Show or hide desired regions, or log out of your account by referring to the
following figure.
– Show region in the Explorer: Show the regions where you need to

perform operations.
– Hide region from the Explorer: Hide the regions you do not need.
– Log Out: Log out of your account.

Creating a Function
1. On the plug-in panel, select Create Function or press Ctrl+Shift+p to search

for the Create Function command. Then, specify the runtime, template,

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html#section1

function name, and local folder as prompted. A function is created in the
specified folder.

2. After the local function is created, the handler file is automatically opened.
3. You can customize the function's configuration by modifying the

automatically generated configuration file. The parameters are as follows:
HcCrmTemplateVersion: v2
Resources:
 Type: HC::Serverless::Function
 Properties:
 Name: functionName //Function name
 Handler: handler // Handler of the function
 Runtime: runtime // Function runtime
 CodeType: inline // Default
 CodeFileName: index.zip // Default
 CodeUrl: ""
 Description: '' // Function runtime
 MemorySize: 128 // Memory for executing the function
 Timeout: 30 // Function timeout, in seconds.
 Version: latest // Default
 Environment:
 Variables: {} // Environment variables
 InitializerHandler: "" // Function initializer
 InitializerTimeout: 0 // Initialization timeout of the function
 EnterpriseProjectId: "0" // Enterprise project
 FuncType: v2
 URN: "" // Function URN, which is generated after the function is downloaded.

Deploying a Function
● Prerequisites

Ensure that the function code path is correct. The code of Node.js, Python,
and PHP functions is stored in the src directory, and the code of other
functions is stored in the root directory.

On the plug-in panel, select Deploy Function or press Ctrl+Shift+p to search for
the Deploy Function command, and select a function and region as prompted.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

● If the deployment is successful, a success message is displayed in the lower
right corner of the page. Switch to the target region to view the deployment
result.

● If the deployment fails, view the error log in the Output area and rectify the
fault.

Local Debugging
1. Node.js

– Prerequisites
Node.js has been installed in the local environment.

– Default mode
Click Local Debug of the handler method, configure the event content,
and click Invoke for debugging.

Figure 9-5 Clicking Local Debug

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

Figure 9-6 Configuring the event content

– Debugging with VS Code
Create the main.js file in the function folder and copy the following

content to this file. Click the icon on the left. Then, click Add
Config, select Node.js, and press F5 to start debugging.
const handler = require('./index'); //Path of the function handler file. Modify it as required.
const event = { 'hello': 'world' }; //Test event. Modify it as required.
const context = {}; //Context class.
console.log(handler.handler(event, context));

2. Python
– Prerequisites

Python has been installed in the local environment.
Create the main.py file in the function folder and copy the following content

to this file. Click the icon on the left. Then, click Add Config, select
Python, and press F5 to start debugging.
import sys
import index #Path of the function handler file. Modify it as required.

#The main method is used for debugging, and event is the selected debugging event.
if __name__ == '__main__':
....event = { 'hello': 'world' } #Test event. Modify it as required.
 context = ''
 content = index.handler(event, context)
....print('Returned value:')
 print(content)

3. Java
– Prerequisites

Java has been installed. VS Code supports Java testing.
In the test directory of the function folder, open the TriggerTestsTest.java

file, and click the icon on the left. Then, click Add Config, select Java,
and press F5 to start debugging.

Other Functions
● Opening in Portal

Right-click the target function, and choose Open in Portal. The function
details page is displayed.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

● Executing a Cloud Function

a. Right-click the target function and choose Invoke Function... from the
shortcut menu.

b. In the Invoke Function panel, select the event to be passed and click
Invoke. The function log and result are displayed in the Output area.

● Downloading a Cloud Function
– Prerequisites

You have been granted the permission (obs:object:GetObject) for
obtaining bucket objects.

Right-click the function you want to download and choose Download... from
the shortcut menu. The function code is downloaded from the cloud to the
specified local path, and the handler file is automatically opened.

● Updating a Cloud Function
Right-click the target function, choose Upload Function... from the shortcut
menu, and select a ZIP package to upload.

● Deleting a Cloud Function

a. Right-click the function to be deleted and choose Delete... from the
shortcut menu.

b. In the confirmation dialog box, click Delete to delete the function.
● Copying URN

Right-click the target function and choose Copy URN from the shortcut menu.

9.3 Eclipse Plug-in
Currently, FunctionGraph does not provide Java function templates and only
allows you to upload Java function packages through OBS. With the Eclipse plug-
in, you can quickly create Java function templates, package function project files,
upload function packages to OBS, and deploy functions.

Step 1 Obtain the Eclipse plug-in (software package verification file: Eclipse plug-
in.sha256).

Step 2 Put the Eclipse plug-in package (.jar or .zip) in the plugins folder under the
Eclipse installation directory. Then restart Eclipse. Figure 9-7 shows the Eclipse
installation directory.

Figure 9-7 Installing the Eclipse plug-in

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/plugin/java-ide-plugin.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/plugin/java-ide-plugin.zip.sha256
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/plugin/java-ide-plugin.zip.sha256

Step 3 Open Eclipse and choose File > New > Other, as shown in Figure 9-8.

Figure 9-8 Creating a template

Step 4 Choose FunctionGraph > Default Java project, as shown in Figure 9-9.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

Figure 9-9 Selecting the default Java template

Step 5 Enter a project name, specify a project directory (or use the default directory), and
click Finish, as shown in Figure 9-10.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

Figure 9-10 Setting the project name and directory

----End

9.4 PyCharm Plug-in
With PyCharm, you can quickly generate Python templates, package project files,
and deploy Python functions.

Step 1 Obtain the plug-in (Plug-in.sha256) .

Step 2 Run JetBrains PyCharm. Choose File > Settings, choose Plugins in the left pane,
and then click Install Plugin from Disk in the upper right corner, as shown in
Figure 9-11.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/plugin/python-ide-plugin-0.0.1.zip
https://functionstage-community.obs.cn-north-1.myhuaweicloud.com/plugin/python-ide-plugin-0.0.1.zip.sha256

Figure 9-11 Installing the plug-in

Step 3 Select the plug-in package you want to install, and click OK, as shown in Figure
9-12.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

Figure 9-12 Selecting a plug-in package

Step 4 In the plug-in list, select the desired plug-in and click Restart IDE, as shown in
Figure 9-13.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

Figure 9-13 Restarting the IDE

Step 5 Choose File > New Project, as shown in Figure 9-14.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

Figure 9-14 Creating a project

Step 6 On the displayed New Project page, choose FunctionGraph, as shown in Figure
9-15.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

Figure 9-15 FunctionGraph

Step 7 Select the path in which the project will be stored in Location, and select a Python
version in Base interpreter, as shown in Figure 9-16.

Figure 9-16 Selecting a version

Step 8 Select a template you want to create in the More Settings area, as shown in
Figure 9-17.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

Figure 9-17 Selecting a template

NO TE

Currently, only the Python 2.7 context template is supported.

Step 9 Click Create.

----End

9.5 Serverless Devs

9.5.1 Introduction

Component Description
Huawei Cloud FunctionGraph component is a tool used to manage the lifecycle of
Huawei Cloud function applications. It is developed based on Serverless Devs. By
configuring the resource configuration file s.yaml, you can easily and quickly
deploy applications on Huawei Cloud FunctionGraph.

Prerequisites
Node.js has been installed on the local host.

Getting Started

Step 1 Run the npm install -g @serverless-devs/s command to install the Serverless
Devs developer tool.

After the installation is complete, you need to configure the key. For details, see
Key Configuration.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

https://www.serverless-devs.com/
https://www.huaweicloud.com/intl/en-us/product/functiongraph.html

Step 2 Initialize a Hello World project by running s init start-fg-http-Nodejs14.

Step 3 After the initialization is complete, enter the project and run s deploy to deploy a
function.

----End

Using Commands
The capabilities of the FunctionGraph component are listed in Table 9-1.

Table 9-1 Component capabilities

Build & Deploy Publish & Configure Other Functions

deploy version Project Migration fun2s

remove alias -

When using the FunctionGraph component, you also need to compile resource
description files. For details about YAML specifications of the FunctionGraph
component, see Huawei Cloud FunctionGraph YAML Specifications.

9.5.2 Key Configuration

Obtaining Key Information
1. Log in to Huawei Cloud and choose My Account > My Credentials in the

upper right corner. The My Credentials page is displayed.
2. In the navigation pane on the left, choose Access Keys. Click Create Access

Key to generate a new access key and download and save it.

Configuring the AK/SK
Using Wizard

Run config add to add a key:

$ s config add

? Please select a provider: (Use arrow keys)
 Alibaba Cloud (alibaba)
 AWS (aws)
 Azure (azure)
 Baidu Cloud (baidu)
 Google Cloud (google)
> Huawei Cloud (huawei)
 Tencent Cloud (tencent)
 Custom (others)

After selecting a provider, you will be prompted to enter the corresponding
information:
s config add

? Please select a provider: Huawei Cloud (huawei)
? AccessKeyID **********

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

? SecretAccessKey **********
? Please create alias for key pair. If not, please enter to skip default

Using a Command

Add a key using a command:

$ s config add --AccessKeyID ****** --SecretAccessKey ******

Or:
$ s config add -kl AccessKeyID,SecretAccessKey -il ${AccessKeyID},${SecretAccessKey}

9.5.3 Using Commands

9.5.3.1 deploy

deploy Commands
deploy commands are used to deploy the function resources declared in a YAML
file (see YAML File) to the cloud.

deploy Command Parsing
You can run deploy -h or deploy --help to view the documentation.

This command contains two subcommands: deploy function and deploy trigger.

deploy function

● deploy function is used to deploy a function.
You can run deploy function -h or deploy function --help to view the
documentation.
Example
If a resource description file (YAML) is available, you can directly run the s
deploy function command to deploy the function. The following is an
example of the description file (YAML):
fgs-deploy-test:
 region: cn-north-4
 function:
 functionName: fgs-deploy-test
 handler: index.handler
 memorySize: 128
 timeout: 30
 runtime: Node.js14.18
 package: default
 codeType: zip
 code:
 codeUri: ./code

deploy trigger

● deploy trigger is used to deploy a trigger of a function.
You can run deploy trigger -h or deploy trigger --help to view the
documentation.
Example
If the resource description file (YAML) is available, you can directly run the s
deploy trigger command to deploy the trigger. The following is an example
of the description file (YAML):

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

fgs-deploy-test:
 region: cn-north-4
 trigger:
 triggerTypeCode: APIG
 status: ACTIVE
 eventData:
 name: APIG_test
 groupName: APIGroup_xxx
 auth: IAM
 protocol: HTTPS
 timeout: 5000

When deploying service resources, you may need to perform some interactive
operations. For details, see the interaction involved during deployment in
Precautions.

Parameter Parsing

Table 9-2 Parameter description

Parameter Name Abbreviation Required in
YAML

Description

type - No Deployment type,
which can be
code or config.

Examples

If the resource description file (YAML) is available, you can directly run the s
deploy command to deploy resources. The following is an example of the resource
description file (YAML):
fgs-deploy-test:
 region: cn-north-4
 function:
 functionName: fgs-deploy-test
 handler: index.handler
 memorySize: 128
 timeout: 30
 runtime: Node.js14.18
 package: default
 codeType: zip
 code:
 codeUri: ./code
 trigger:
 triggerTypeCode: APIG
 status: ACTIVE
 eventData:
 name: APIG_test
 groupName: APIGroup_xxx
 auth: IAM
 protocol: HTTPS
 timeout: 5000

Precautions

You may have some special requirements during resource deployment. See the
following description:

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

● To only deploy or update the code, add the --type code parameter.

● To only deploy or update the configuration, add the --type config parameter.

9.5.3.2 version

version Commands

version commands are used to view aliases, publish, and delete a function version.

Command Parsing

You can run version -h or version --help to view the documentation.

This command includes two subcommands:

● version list

● version publish

version list

version list is used to list all published versions of a service.

You can run version list -h or version list --help to view the documentation.

This command also supports some global parameters, such as -a/--access and --
debug. For details, see Global Parameters of Serverless Devs.

Table 9-3 Parameter description

Parameter
Name

Abbreviation Required in
YAML

Required in
CLI

Description

region - No Yes Region

function-
name

- No Yes Function
name

table - No Yes Output in
table

Example

● If you have a resource description file (YAML), run s version list to list all
published versions of a function.

● If you use CLI (without a YAML resource description file), specify a region and
service name. For example, s cli fgs version list --region cn-north-4 --
function-name fg-test.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

NO TICE

When using CLI, if the key is not default, add the access parameter. For
example, s cli fgs version list --region cn-north-4 --function-name fg-test
--access xxxx.

Execution result of the preceding command:
fg-test:
 -
 version: 1
 description: test publish version
 lastModifiedTime: 2021-11-08T06:07:00Z

If the --table parameter is used, the following output is displayed.

Figure 9-18 Output example:

version publish

version publish is used to publish a version.

You can run version publish -h or version publish --help to view the
documentation.

This command also supports some global parameters, such as -a/--access and --
debug. For details, see Global Parameters of Serverless Devs.

Table 9-4 Parameter description

Parameter
Name

Abbreviation Required in
YAML

Required in
CLI

Description

region - No Yes Region

function-
name

- No Yes Function
name

version-name - No Yes Version

description - No Yes Description

Example

● If you have a resource description file (YAML), run s version publish to
publish a version.

● If you use CLI (without a YAML resource description file), specify a region and
service name. For example, s cli fgs version publish --region cn-north-4 --

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

function-name fg-test --version-name 1 --description "test publish
version".

NO TICE

When using CLI, if the key is not default, add the access parameter. For
example, s cli fgs version publish --region cn-north-4 --function-name fg-
test --version-name 1 --description "test publish version" --access xxxx.

Execution result of the preceding command:
fg-test:
 version: 1
 description: test publish version
 lastModifiedTime: 2021-11-08T06:07:00Z

9.5.3.3 Project Migration fun2s
fun2s is used to convert the configuration of a function into the s.yaml format so
that it can be identified by Serverless Devs.

● Command Parsing
– Command Parsing
– Examples

Command Parsing
You can run fun2s -h or fun2s --help to view the documentation.

This command also supports some global parameters, such as -a/--access and --
debug. For details, see Global Parameters of Serverless Devs.

Table 9-5 Parameter description

Parameter
Name

Abbrevi
ation

Required
in CLI

Description

region - Yes Region

function-
name

- Yes Function name

target - No Path of the generated Serverless Devs
configuration file (s.yaml by default)

Examples
In the Funcraft project, run fun2s to convert a function into the YAML format. For
example:
s cli fgs fun2s --region cn-north-4 --function-name fgs-deploy-test --target ./s.yml

Tips for next step
======================
* Deploy Function: s deploy -t ./s.yml

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

In this way, you can convert the original function configuration into s.yaml so that
it complies with Serverless Devs specifications.

After conversion (s.yaml):
edition: 1.0.0
name: transform_fun
access: default
vars:
 region: cn-north-4
 functionName: fgs-deploy-test
services:
 component-test: # Service name
 component: fgs # Component name
 props:
 region: ${vars.region}
 function:
 functionName: ${vars.functionName}
 handler: index.handler
 memorySize: 256
 timeout: 300
 runtime: Node.js14.18
 codeType: zip
 code:
 codeUri: ./code

9.5.3.4 remove

remove Commands

remove commands are used to remove a deployed resource. Resources cannot be
recovered once removed.

Command Parsing

You can run remove -h or remove --help to view the documentation.

This command includes four subcommands:

● function: Delete a specified function.

● trigger: Delete a specified trigger.

● version: Delete a specified version.

● alias: Delete a specified alias.

Table 9-6 Parameter description

Parameter Name Abbreviation Required in
YAML

Description

assume-yes y No During
interaction, y is
selected by
default.

Example

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

If a resource description file (YAML) is available, run the s remove command to
delete the resource. The following is an example of the resource description file
(YAML):
Function [myFunction] deleted successfully.

remove function

remove function is used to delete a specified function. This will also delete all
versions, aliases, and triggers of the function.

You can run remove function -h or remove function --help to view the
documentation.

Table 9-7 Parameter description

Parameter
Name

Abbreviation Required in
YAML

Required in
CLI

Description

region - No Yes Region

function-
name

- No Yes Function
name

assume-yes y No Yes During
interaction, y
is selected by
default.

Example

● If you have a resource description file (YAML), run s remove function to
delete a specified function.

● If you use CLI (without a YAML resource description file), specify the name
and region of the service. For example, s cli fgs remove function --region
cn-north-4 --function-name fgs-test.

NO TICE

When using CLI, if the key is not default, add the access parameter. For
example, s cli fgs remove function --region cn-north-4 --function-name
fgs-test --access xxxx.

Execution result of the preceding command:
Function [fg-test] deleted.

remove trigger

remove trigger is used to delete a specified trigger.

You can run remove trigger -h or remove trigger --help to view the
documentation.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

This command also supports some global parameters, such as -a/--access and --
debug. For details, see Global Parameters of Serverless Devs.

Table 9-8 Parameter description

Parameter
Name

Abbr
eviat
ion

Required
in YAML

Requir
ed in
CLI

Description

region - No Yes Region

function-
name

- No Yes Function name

version-name - No No Version. Default: latest

trigger-type - No Yes Trigger type

trigger-name - No Yes Trigger name. APIG: API name;
OBS: bucket name; TIMER: trigger
name

assume-yes y No No During interaction, y is selected
by default.

Example

● If you have a resource description file (YAML), run s remove trigger to delete
a trigger declared in the file.

● If you use CLI (without a YAML resource description file), specify the name
and region of the service. For example, s cli fgs remove trigger --region cn-
north-4 --function-name fgs-test --trigger-type APIG --trigger-name fgs-
test-trigger.

Execution result of the preceding command:
Trigger [fgs-test-trigger] deleted.

remove version

remove version is used to delete a specified version.

You can run remove version -h or remove version --help to view the
documentation.

This command also supports some global parameters, such as -a/--access and --
debug. For details, see Global Parameters of Serverless Devs.

Table 9-9 Parameter description

Parameter
Name

Abbreviation Required in
YAML

Required in
CLI

Description

region - No Yes Region

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

Parameter
Name

Abbreviation Required in
YAML

Required in
CLI

Description

function-
name

- No Yes Service name

version-name - Yes Yes Version name,
which cannot
be latest.

Example

● If you have a resource description file (YAML), run s remove version --
version-name versionName to delete a specified versionName.

● If you use CLI (without a YAML resource description file), specify the region
and name of the service. For example, s cli fgs remove version --region cn-
north-4 --function-name fgs-test --version-name v1.

Execution result of the preceding command:
Version [v1] deleted.

remove alias
remove alias is used to delete a specified alias.

You can run remove alias -h or remove alias --help to view the documentation.

This command also supports some global parameters, such as -a/--access and --
debug. For details, see Global Parameters of Serverless Devs.

Table 9-10 Parameter description

Parameter
Name

Abbreviation Required in
YAML

Required in
CLI

Description

region - No Yes Region

function-
name

- No Yes Service name

alias-name - Yes Yes Alias

Example

● If you have a resource description file (YAML), run s remove alias --alias-
name aliasName to delete a specified alias.

● If you use CLI (without a YAML resource description file), specify the region
and name of the service. For example, s cli fgs remove alias --region cn-
north-4 --function-name fgs-test --alias-name pre.

Execution result of the preceding command:

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

Alias [pre] deleted.

9.5.3.5 alias
alias commands are used to view, publish, modify, and delete a function alias.

Command Parsing
You can run alias -h or alias --help to view the documentation.

This command includes four subcommands:

● alias get
● alias list
● alias publish
● remove alias

alias get
alias get is used to obtain details about a specified alias of a service.

You can run alias get -h or alias get --help to view the documentation.

This command also supports some global parameters, such as -a/--access and --
debug. For details, see Global Parameters of Serverless Devs.

Table 9-11 Parameter description

Parameter
Name

Abbreviation Required in
YAML

Required in
CLI

Description

region - No Yes Region

function-
name

- No Yes Function
name

alias-name - Yes Yes Alias

Example

● If you have a resource description file (YAML), run s alias get --alias-name
aliasName to obtain the details about a specified alias.

● If you use CLI (without a YAML resource description file), specify the region
and name of the service. For example, s cli fgs alias get --region cn-north-4
--function-name fg-test --alias-name pre.

NO TICE

When using CLI, if the key is not default, add the access parameter. For example,
s cli fgs alias get --region cn-north-4 --function-name fg-test --alias-name pre
--access xxxx.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

Execution result of the preceding command:
fg-test:
 aliasName: pre
 versionId: 1
 description: test publish version
 additionalVersionWeight:
 createdTime: 2021-11-08T06:51:36Z
 lastModifiedTime: 2021-11-08T06:54:02Z

alias list

alias list is used to list the aliases.

You can run alias list -h or alias list --help to view the documentation.

This command also supports some global parameters, such as -a/--access and --
debug. For details, see Global Parameters of Serverless Devs.

Table 9-12 Parameter description

Parameter
Name

Abbreviation Required in
YAML

Required in
CLI

Description

region - No Yes Region

function-
name

- No Yes Function
name

table - No No Output in
table

Example

● If you have a resource description file (YAML), run s alias list to list the
aliases.

● If you use CLI (without a YAML resource description file), specify the region
and name of the service. For example, s cli fgs alias list --region cn-north-4
--function-name fg-test.

NO TICE

When using CLI, if the key is not default, add the access parameter. For example,
s cli fgs alias list --region cn-north-4 --function-name fg-test --access xxxx.

Execution result of the preceding command:
fg-test:
 -
 aliasName: pre
 versionId: 1
 description: test publish version
 lastModifiedTime: 2021-11-08T06:54:02Z
 additionalVersionWeight:

If the --table parameter is specified, as shown in Figure 9-19:

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

Figure 9-19 Output example:

alias publish
alias publish is used to publish and update an alias.

You can run alias publish -h or alias publish --help to view the documentation.

This command also supports some global parameters, such as -a/--access and --
debug. For details, see Global Parameters of Serverless Devs.

Table 9-13 Parameter description

Parameter
Name

Abbre
viatio
n

Require
d in
YAML

Required
in CLI

Description

region - No Yes Region

function-
name

- No Yes Function name

alias-name - Yes Yes Alias

version-
name

- No Yes Version corresponding to the
alias

description - No No Alias description

gversion - No No ID of an additional version for
dark launch. This is required only
when a weight is specified.

weight - No No Weight of the dark launch
version. This parameter is
required when the dark launch
version ID is specified.

Example

● If you have a resource description file (YAML), run s alias publish to publish
or update an alias.

● If you use CLI (without a YAML resource description file), specify the region
and name of the service. For example, s cli fgs alias publish --region cn-
north-4 --function-name fg-test --alias-name pre --version-name 1.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

NO TICE

When using CLI, if the key is not default, add the access parameter. For example,
s cli fgs alias publish --region cn-north-4 --function-name fg-test --alias-name
pre --version-name 1 --access xxxx.

Execution result of the preceding command:
fg-test:
 aliasName: pre
 versionId: 1
 description:
 additionalVersionWeight:
 createdTime: 2021-11-08T06:51:36Z
 lastModifiedTime: 2021-11-08T06:51:36Z

To upgrade an alias, specify the alias and update the desired parameters. For
example, to add a description for the preceding pre alias, specify the --description
parameter and run the previous command again. The output is as follows:
fc-deploy-test:
 aliasName: pre
 versionId: 1
 description: test publish version
 additionalVersionWeight:
 createdTime: 2021-11-08T06:51:36Z
 lastModifiedTime: 2021-11-08T06:54:02Z

remove alias
For details, see remove alias.

9.5.3.6 YAML File

Complete YAML Configuration
The YAML fields of Huawei Cloud FunctionGraph component are as follows:
edition: 1.0.0 # YAML specifications version for the command line, which complies with the Semantic
Versioning specifications.
name: fg-test # Project name
access: "default" # Key alias

vars: # Global variables
 region: "cn-east-3"
 functionName: "start-fg-event-Nodejs14"

services:
 component-test: # Service name
 component: fgs # Component name
 props:
 region: ${vars.region}
 function:
 functionName: ${vars.functionName} # Function name
 handler: index.handler # Handler
 memorySize: 256 # Memory required for the function
 timeout: 30 # Timeout for executing the function
 runtime: Node.js14.18 # Runtime
 agencyName: fgs-vpc-test # Agency name
 environmentVariables: # Environment variables
 test: test
 hello: world
 vpcId: xxx-xxx # Unique ID of a Virtual Private Cloud (VPC)
 subnetId: xxx-xxx # Subnet ID
 concurrency: 10 # Maximum number of instances for the function

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

 concurrentNum: 10 # Maximum number of concurrent requests per instance
 codeType: zip # Function code type
 dependVersionList: # Dependency ID
 - xxx-xxx
 code: # Local code address
 codeUri: ./code
 trigger:
 triggerTypeCode: TIMER # Trigger type
 status: DISABLED # Trigger status
 eventData: # Trigger configuration
 name: APIG_test # API name
 groupName: APIGroup_xxx # Group name
 auth: IAM # Security authentication
 protocol: HTTPS # Request protocol
 timeout: 5000 # Backend timeout duration

Table 9-14 Parameter description

Parameter Required Type Description

region True Enum Region

function True Struct Function

triggers False Struct Triggers

Description of function Fields
The function fields in the YAML file are described in Table 9-15.

Table 9-15 Description of function fields

Paramet
er Name

Requir
ed

Type Description

function
Name

True String Function name.

handler True String Handler of the function in the format of "xx.xx". It
must contain a period (.).

runtime True String Function runtime.

package False String Package (or group) to which the function belongs.
The default value is default.

memoryS
ize

True Num
ber

Memory size (MB) allocated to the function. The
options include 128, 256, 512, 768, 1024, 1280,
1536, 1792, 2048, 2560, 3072, 3584, and 4096.

timeout True Num
ber

Maximum duration the function can be executed.
Value range: 3s–900s.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

Paramet
er Name

Requir
ed

Type Description

Code
Type

True String Function code type. Options:
● inline: inline code
● zip: ZIP file
● obs: function code stored in an OBS bucket
● jar: JAR file, mainly for Java functions

codeUrl False String If CodeType is set to obs, enter the OBS URL of
the function code package. If CodeType is not set
to obs, leave this parameter blank.

environm
entVariab
les

False Struc
t

Environment variable. A maximum of 20
environment variables can be defined. The total
length cannot exceed 4 KB.

agencyN
ame

False String Name of an agency created in IAM. This is
required when the function needs to access other
services.

vpcId False String Unique ID of a VPC. agencyName is required if
you set this parameter. Log in to the VPC Console
to view the VPC ID.

subnetId False String Subnet ID. agencyName is required if you set this
parameter. To obtain the subnet ID, log in to the
VPC Subnet page.

dependV
ersionList

False List<S
tring>

Dependency package IDs.

code False Struc
t

Local code address, which is required if CodeType
is set to zip.

concurre
ncy

False Num
ber

Maximum number of instances in which a function
can run. Range: –1 to 1,000. –1: The function can
run in any number of instances. 0: The function is
disabled.

concurre
ntNum

False Num
ber

Maximum number of concurrent requests per
instance. Range: –1 to 1,000.

descriptio
n

False String Brief description of function.

● Func Code parameters

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

https://console-intl.huaweicloud.com/vpc/#/vpc/vpcs/list
https://console-intl.huaweicloud.com/vpc/?locale=en-us#/vpc/subnets

Table 9-16 Func Code parameters

Parameter
Name

Required Type Description

codeUri True String Local code
address

● Environment variables

Object format. For example:
DB_connection: jdbc:mysql://ip:port/dbname

Do not write sensitive information to s.yaml in plaintext.

Example
function:
 functionName: event-function
 description: this is a test
 runtime: Node.js14.18
 handler: index.handler
 memorySize: 128
 timeout: 60
 code:
 codeUri: ./code
 environmentVariables:
 test: 123
 hello: world

Description of triggers Fields

The triggers fields in the YAML file are described in Table 9-17.

Table 9-17 trigger parameter description

Paramete
r Name

Requi
red

Type Description

triggerTyp
eCode

True String Trigger type

status False Enum Trigger status. Options: ACTIVE (default) and
DISABLED

eventData True Struct Trigger configurations, including APIG and timer
triggers

● APIG trigger

Table 9-18 APIG trigger parameters

Paramet
er Name

Requi
red

Type Description

name False String API name. The function name is used by
default.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

Paramet
er Name

Requi
red

Type Description

groupNa
me

False String Group. The first one is selected by default.

auth False Enum Authentication mode. Default: IAM.
API authentication mode. Options:
● App: AppKey and AppSecret high security

authentication. This authentication mode
is recommended. For details, see App
Authentication.

● IAM: IAM authentication. Only IAM users
are allowed to access the system. The
security level is medium. For details, see
IAM Authentication.

● None: No authentication. This mode
grants access permissions to all users.

protocol False Enum Request protocol. Default: HTTPS.
Options:
● HTTP
● HTTPS

timeout False Numb
er

Backend timeout in milliseconds. Range: 1–
60,000. Default: 5000.

Example:
trigger:
 triggerTypeCode: APIG
 status: ACTIVE
 eventData:
 name: APIG_test
 groupName: APIGroup_xxx
 auth: IAM
 protocol: HTTPS
 timeout: 5000

● Timer trigger

Table 9-19 Timer trigger parameter description

Paramet
er Name

Req
uire
d

Type Description

name Fals
e

Strin
g

Timer name.

schedule
Type

True Enu
m

Trigger rule. The value can be Rate or Cron.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

https://support.huaweicloud.com/intl/en-us/devg-apig/apig-dev-180907066.html
https://support.huaweicloud.com/intl/en-us/devg-apig/apig-dev-180907066.html
https://support.huaweicloud.com/intl/en-us/devg-apig/apig-dev-180307020.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0207.html

Paramet
er Name

Req
uire
d

Type Description

schedule True Strin
g

Timer rule content.

userEven
t

Fals
e

Strin
g

Additional information, which will be put into the
user_event field of the timer event source.

Example:
trigger:
 triggerTypeCode: TIMER
 status: ACTIVE
 eventData:
 name: Timer-xxx
 scheduleType: Rate
 schedule: 3m
 userEvent: xxxx

trigger:
 triggerTypeCode: TIMER
 status: ACTIVE
 eventData:
 name: Timer-xxx
 scheduleType: Cron
 schedule: 0 15 2 * * ?
 userEvent: xxxx

9.5.4 Huawei Cloud FunctionGraph YAML Specifications

Field Parsing

Table 9-20 Parameter description

Parameter Name Required Type Description

region True Enum Enum

function True Struct Function

trigger False Struct Triggers

Complete YAML Configuration
The YAML fields of Huawei Cloud FunctionGraph component are as follows:
edition: 1.0.0 # YAML specifications version for the command line, which complies with the Semantic
Versioning specifications.
name: fg-test # Project name
access: "default" # Key alias

vars: # Global variable
 region: "cn-east-3"
 functionName: "start-fg-event-Nodejs14"

services:

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

 component-test: # Service name
 component: fgs # Component name
 props:
 region: ${vars.region}
 function:
 functionName: ${vars.functionName} # Function name
 handler: index.handler # Handler of the function
 memorySize: 256 # Memory required for the function
 timeout: 30 # Timeout for executing the function
 runtime: Node.js14.18 # Runtime
 agencyName: fgs-vpc-test # Agency name
 environmentVariables: # Environment variables
 test: test
 hello: world
 vpcId: xxx-xxx # Unique ID of a Virtual Private Cloud (VPC)
 subnetId: xxx-xxx # Subnet ID
 concurrency: 10 # Maximum number of instances of a single function
 concurrentNum: 10 # Maximum number of concurrent tasks of a single instance
 codeType: zip # Code type of the function
 dependVersionList: # Dependency ID
 - xxx-xxx
 code: # Local code address
 codeUri: ./code
 trigger:
 triggerTypeCode: TIMER # Trigger type
 status: DISABLED # Trigger status
 eventData: # Trigger configuration
 name: APIG_test # API name
 groupName: APIGroup_xxx # Group name
 auth: IAM # Security authentication
 protocol: HTTPS # Request protocol
 timeout: 5000 # Backend timeout duration

9.5.5 Global Parameters of Serverless Devs

Table 9-21 Global parameters of Serverless Devs

Parameter
Name

Abbreviation Default
Value

Description Remarks

template t s.yaml or
s.yml

Specify a
resource
description
file.

-

access a access
information
specified in
the YAML file
or default

Specify the
key
information
for this
deployment.

You can use
the key
information
configured by
running the
config
command
and the key
information
configured to
environment
variables.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

Parameter
Name

Abbreviation Default
Value

Description Remarks

skip-actions - - Skip the
actions
module set in
the YAML file.

-

debug - - Enable the
Debug Mode

After the
Debug Mode
is enabled,
you can view
more
information
about the
tool execution
process.

output o default Specify the
data output
format.

The default,
JSON, YAML,
and RAW
formats are
supported.

version v - View version
information

-

help h - View help
information

-

9.6 Serverless Framework

9.6.1 Usage Guide
Welcome to Huawei Cloud FunctionGraph serverless usage guide.

NO TE

Before using the CLI, you need to provide Huawei Cloud Credentials.

9.6.1.1 Introduction

The Serverless Framework helps you develop and deploy serverless applications
using FunctionGraph. It is a CLI that offers structure, automation, and best
practices out-of-the-box, allowing you to focus on building sophisticated, event-
driven, serverless architectures, comprised of Function and Events.

The Serverless Framework is different from other application frameworks because:

● It manages your code as well as your infrastructure.
● It supports multiple languages (Node.js, Python, Java, and more).

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

Core Concepts

Here are the main concepts of the Framework and how they pertain to
FunctionGraph.

Function

Function refers to a Huawei Cloud FunctionGraph function. It is an independent
unit of deployment, like a microservice. It is merely code deployed in the cloud
and mostly written to perform a single job such as:

● Saving a user to the database

● Processing files in the database

You can perform multiple tasks in your code, but we do not recommend doing so
without good reason. Separation of concerns is best and the Framework is
designed to help you easily develop and deploy functions, as well as manage
them.

Events

Anything that triggers a Huawei Cloud FunctionGraph function to execute is
regarded by the Framework as an Event. Events are platform events on Huawei
Cloud FunctionGraph including API Gateway (APIG) service and API (for example,
REST API), OBS bucket (for example, image uploaded into a bucket).

When you define an event for your FunctionGraph in the Serverless Framework,
the Framework will automatically translate the event with its function into the
corresponding cloud resources. This way the event is configured so that your
functions can listen to it.

Service

Service is the Framework's unit of organization. You can consider it as a project
file, though you can have multiple services for a single application. It is where you
define your functions, the events that trigger them, and the resources your
functions use, all in one file entitled serverless.yml (or serverless.json).

serverless.yml

service: fgs

functions: # Your "Functions"
 hello_world:
 events: # The "Events" that trigger this function
 - apigw:
 env_id: DEFAULT_ENVIRONMENT_RELEASE_ID
 env_name: RELEASE
 req_method: GET
 path: /test
 name: API_test

When you deploy with the Framework by running serverless deploy, everything in
serverless.yml is deployed at once.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

https://www.huaweicloud.com/intl/en-us/product/functiongraph.html

Plug-in

You can overwrite or extend the functionality of the Framework using Plug-ins.
Every serverless.yml can contain a plugins: attribute, which features multiple
plug-ins.
serverless.yml

plugins:
 - serverless-huawei-functions

9.6.1.2 Quick Start

This guide is designed to help you get started as quickly as possible.

Initial Setup

There are a few prerequisites you need to install and configure:

● Install Node.js 14.x or later version on your local machine. For details, see
Installing Node.js and NPM.

● Install the Serverless Framework open-source CLI 3.28.1 or later version. For
details, see Installing the Open-source CLI of the Serverless Framework..

If you already have these prerequisites set up, you can skip ahead to deploy an
example service.

Installing Node.js and NPM

Step 1 Install Node.js and NPM. For details about the download address, see the
download description.

Step 2 At the end, you can run Node -v from your command line and you will get a
result like this:
$ Node -v
vx.x.x

You can also run npm -v from your command line and you will get a result like
this:
$ npm -v
x.x.x

----End

Installing the Open-source CLI of the Serverless Framework.

Step 1 Run this command in your terminal:
npm install -g serverless

Step 2 After the installation is complete, you can run serverless -v from your command
line and you will get a result like this:
$ serverless -v
x.x.x

----End

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

https://nodejs.org/en/download

Creating and Deploying a Serverless Service
The setup is completed, now you can create and deploy a serverless service.

Step 1 Create a new service.

1. Create a new service with the huawei-Nodejs template.
serverless create --template-url https://github.com/zy-linn/examples/tree/v3/legacy/huawei-Nodejs --
path my-service

2. Install the dependencies.
cd my-service
npm install

Step 2 Set up the credentials. For details, see credential settings.

Step 3 Update the serverless.yml.

Update the region and credentials in serverless.yml.

Step 4 Deploy.

Use this command to deploy a service for the first time or to deploy all changes in
the service after modifying the functions, events, or resources in the
serverless.yml file. For details about this command, see Deploy.
serverless deploy

----End

9.6.1.3 Installation
Serverless is a Node.js CLI tool, so the first thing you need is to install Node.js on
your machine.

Go to the official Node.js website, download and follow the download
description to install Node.js on your local machine.

You can verify whether the Node.js is installed successfully by running Node --
version in your terminal. If installed, you can see the corresponding Node.js
version number printed out.

Installing the Serverless Framework

Step 1 Next, install the Serverless Framework via npm which was already installed when
you installed Node.js.

Step 2 Open a terminal and type npm install -g serverless to install Serverless.
npm install -g serverless

Step 3 Once the installation is done, you can verify whether Serverless is installed
successfully by running the following command in your terminal:
serverless

To see which Serverless version of, run:
serverless --version

----End

Installing the FunctionGraph Plug-ins
To install the latest package from npm, run:

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

https://nodejs.org/en
https://nodejs.org/en/download
https://nodejs.org/en/download
https://www.npmjs.com/

npm i --save serverless-huawei-functions

Setting up FunctionGraph
To run Serverless commands that issue requests to Huawei Cloud, you will need to
set up your Huawei Cloud credentials For details, see credential settings

9.6.1.4 Credentials
The Serverless Framework needs access to your Huawei Cloud credentials so that
it can create and manage resources on your behalf.

Creating a Huawei Cloud Account
Open Huawei Cloud official website, and then choose Sign Up. For details, see
Registering a HUAWEI ID and Enabling Huawei Cloud Services.

Getting the Credentials
You need to create credentials so that Serverless can use them to create resources
in your project.

Step 1 Go to the Access Keys page to get the access keys of your Huawei Cloud account.

Step 2 Create a file named credentials containing the credentials that you have
collected.
access_key_id=<collected in step 1>
secret_access_key=<collected in step 1>

Step 3 Save the credentials file somewhere secure. We recommend creating a folder in
your root folder and putting it there, like ~/.fg/credentials. Remember the path
you saved it to.

----End

Updating the provider Configuration in serverless.yml
Open your serverless.yml file and update the provider section with the path to
your credentials file (the path should be absolute). The result should be like this:
provider:
 name: huawei
 runtime: Node.js14.18
 credentials: ~/.fg/credentials

9.6.1.5 Service
A service is like a project. It is where you define your FunctionGraph functions and
the events that trigger them, all in a file called serverless.yml.

To build your first Serverless Framework project, create a service.

Organizing
For the beginners, you can use a single service to define all of the functions and
events.
myService/
 serverless.yml # Contains all functions and infrastructure resources

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

https://www.huaweicloud.com/intl/en-us
https://support.huaweicloud.com/intl/en-us/usermanual-account/account_id_001.html
https://console-intl.huaweicloud.com/iam/#/mine/accessKey" target="_blank/?locale=en-us

As your application grows, you can split it into multiple services. Most users
organize their services by workflows or data models, and group the functions
related to those workflows and data models together.
users/
 serverless.yml # Contains 4 functions that do Users CRUD operations and the Users database
posts/
 serverless.yml # Contains 4 functions that do Posts CRUD operations and the Posts database
comments/
 serverless.yml # Contains 4 functions that do Comments CRUD operations and the Comments database

This makes sense since related functions usually use common infrastructure
resources, and users want to keep those functions and resources together as a
single unit of deployment for better organization and separation of concerns.

Creating
To create a service, use the create command. You can also input a path to create
a directory and auto-name your service:
Create service with Node.js template in the folder ./my-service
serverless create --template-url https://github.com/zy-linn/examples/tree/v3/legacy/huawei-Nodejs --path
my-service

huawei-Nodejs is an available runtime of FunctionGraph.

Check out the Create for all the details and options.

Contents
You will see the following files in your working directory:

● serverless.yml
● src/index.js

serverless.yml

Each service configuration is managed in the serverless.yml file. The main
responsibilities of this file are:

● Declare a Serverless service.
● Define one or more functions in the service:

– Define the provider the service will be deployed to (and the runtime if
provided).

– Define any custom plug-ins to be used.
– Define events that trigger functions to execute (such as HTTP requests).
– Allow events listed in the events section to automatically create the

resources required for the event upon deployment.
– Allow flexible configuration using Serverless variables.

You can see the name of the service, the provider configuration, and the first
function inside the functions definition. Any further service configuration will be
done in this file.
serverless.yml
service: my-fc-service

provider:
 name: huawei
 runtime: Node.js14.18
 credentials: ~/.fg/credentials # path must be absolute

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

plugins:
 - serverless-huawei-functions

functions:
 hello_world:
 handler: index.handler

index.js

The index.js file contains your exported functions.

Deploying
When you deploy a service, all of the functions and events in your serverless.yml
are translated into calls to the Huawei Cloud API to dynamically define those
resources.

To deploy a service, use the deploy command:

serverless deploy

Check out the deployment guide to learn more about deployments and how they
work. Or, check out the deploy command docs for all the details and options.

Removing
To easily remove your service on Huawei Cloud, you can use the remove
command.

Run serverless remove to trigger the removal process.

You will be notified of the process in the console when the removal starts. A
success message is printed once the whole service is removed.

Only the service on your provider's infrastructure is removed during the removal
process. The service directory will still remain on your local machine so you can
still modify and (re)deploy it to another stage, region, or provider later on.

Version Pinning
The Serverless Framework is usually installed globally via npm install -g
serverless. Therefore, the Serverless CLI is available for all your services.

Installing tools globally has the downside that the version cannot be pinned inside
the package.json. This can lead to issues if you upgrade Serverless, but your
colleagues or CI system do not. You can use a feature in your serverless.yml
without worrying that your CI system will deploy with an old version of Serverless.

● Pinned version
To configure version pinning, define a frameworkVersion attribute in your
serverless.yml. Whenever you run a Serverless command from the CLI, it
checks whether your current Serverless version is in the frameworkVersion
range. The CLI uses Semantic Versioning so you can pin it to an exact version
or provide a range. In general, we recommend pinning to an exact version to
ensure everybody in your team has the exact same setup and no unexpected
problems occur.
Examples

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

https://semver.org/

Explicit version
serverless.yml

frameworkVersion: '2.1.0'

Version range
serverless.yml

frameworkVersion: ^2.1.0 # >=2.1.0 && <3.0.0

Installing Serverless in an Existing Service

If you already have a Serverless service, and prefer to lock down the framework
version using package.json, then you can install Serverless as follows:

from within a service
npm install serverless --save-dev

● Invoke serverless locally
To execute the locally installed Serverless, you have to reference the binary
out of the Node_ modules directory. An example is as follows:
Node ./Node_modules/serverless/bin/serverless deploy

9.6.1.6 Functions

If you are using Huawei Cloud FunctionGraph as a provider, all functions inside the
service are Huawei Cloud FunctionGraph functions.

Configuration

All of the Huawei Cloud FunctionGraph in your Serverless service can be found in
serverless.yml under the functions attribute.
serverless.yml
service: fg-service

provider:
 name: huawei

plugins:
 - serverless-huawei-functions

functions:
 first:
 handler: index.handler

Handler

The handler attribute should be the function name you have exported in your
handler file.

For example, when you export a function with the name handler in index.js, your
handler should be handler: index.handler.
// index.js
exports.handler = (event, context, callback) => {};

Memory Size and Timeout

The memorySize and timeout for the functions can be specified at the provider
or function level. The provider definition enables all functions to share this

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

configuration, whereas the function definition indicates that this configuration is
only valid for the function.

The default memorySize is 256 MB and the default timeout is 30s if not
specified.
serverless.yml

provider:
 memorySize: 512
 timeout: 90

functions:
 first:
 handler: first
 second:
 handler: second
 memorySize: 256
 timeout: 60

Handler Signature

The signature of an event handler is:
function (event, context) { }

● event
If the function is triggered by an APIG event specified, the event passed to
the handler will be:
// JSON.parse(event)
{
 events: {
 "body": "",
 "requestContext": {
 "apiId": "xxx",
 "requestId": "xxx",
 "stage": "RELEASE"
 },
 "queryStringParameters": {
 "responseType": "html"
 },
 "httpMethod": "GET",
 "pathParameters": {},
 "headers": {
 "accept-language": "zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2",
 "accept-encoding": "gzip, deflate, br",
 "x-forwarded-port": "443",
 "x-forwarded-for": "xxx",
 "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
 "upgrade-insecure-requests": "1",
 "host": "xxx",
 "x-forwarded-proto": "https",
 "pragma": "no-cache",
 "cache-control": "no-cache",
 "x-real-ip": "xxx",
 "user-agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:57.0) Gecko/20100101 Firefox/57.0"
 },
 "path": "/apig-event-template",
 "isBase64Encoded": true
 }
}

● context
The context parameter contains the runtime information about the function.
For example, request ID, temporary AK, and function metadata. See
Developing an Event Function.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

https://support.huaweicloud.com/intl/en-us/devg-functiongraph/functiongraph_02_0410.html

9.6.1.7 Events
Simply put, events are the things that trigger your functions to run.

If you are using Huawei Cloud as your provider, events in the service are limited to
the Huawei Cloud APIG and OBS. For details, see Event list.

Upon deployment, the Framework will set up the corresponding event
configuration your function should listen to.

Configuration
Events belong to each function and can be found in the events attribute in
serverless.yml.
serverless.yml
functions:
 first: # Function name
 handler: index.http # Reference to file index.js & exported function 'http'
 events:
 - apigw:
 env_id: DEFAULT_ENVIRONMENT_RELEASE_ID
 env_name: RELEASE
 req_method: GET
 path: /test
 name: API_test

NO TE

Currently, only one event definition per function is supported.

Types
The Serverless Framework supports OBS and APIG events of the FunctionGraph.
For details, see Event list.

Deployment
To deploy or update your functions and events, run:
serverless deploy

9.6.1.8 Deploy
The Serverless Framework is designed to provision functions, events and resources
of FunctionGraph safely and quickly.

Deploying All
This is the main method for deploying with the Serverless Framework:
serverless deploy

Use this method when you have updated your function, event, or resource
configuration in serverless.yml and you want to deploy that change (or multiple
changes at the same time) to Huawei Cloud.

Working Principles
The Serverless Framework translates all syntax in serverless.yml to a
configuration template.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

1. The provider plugin parses serverless.yml configuration and translates it to
Huawei Cloud resources.

2. The code of your functions is then packaged into a directory, zipped, and
uploaded to the deployment bucket.

3. Resources are deployed.

NO TE

Use this in your CI/CD system, as it is the safest method for deployment.

Check out the deploy command docs for all the details and options.

9.6.1.9 Package

Packaging CLI Command
Using the Serverless CLI tool, you can package your project without deploying it to
Huawei Cloud. This is best used with CI/CD workflows to ensure consistent
deployable artifacts.

Running the following command will build and save all of the deployment
artifacts in the .serverless directory of the service:
serverless package

Packaging Configuration
If you want to have more control over function artifacts and package methods.

You can use the patterns configuration.

● Patterns
Patterns allow you to define globs that will be excluded/included from the
resulting artifact. If you want to exclude files, you can use a global pattern
prefixed with !, such as !exclude-me/**. Serverless Framework will run the
global patterns so that you can always re-include previously excluded files
and directories.
Examples
Exclude all Node_modules but then re-include a specific module (Node-fetch
in this case) using exclude
package:
 patterns:
 - '!Node_modules/**'
 - 'Node_modules/Node-fetch/**'

Exclude all files but handler.js
package:
 patterns:
 - '!src/**'
 - src/function/handler.js

NO TE

If you want to exclude directories, use the correct global syntax. The following is an
example:
package:
 patterns:
 - '!tmp/**'
 - '!.git/**'

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

● Artifact

For complete control over the packaging process, you can specify your own
artifact ZIP file.

Serverless will not zip your service if this is configured and therefore patterns
will be ignored. Either you use artifact or patterns.

The artifact option is especially useful if your development environment
allows you to generate a deployable artifact like Maven does for Java.

Example
service: my-service
package:
 patterns:
 - '!tmp/**'
 - '!.git/**'
 - some-file
 artifact: path/to/my-artifact.zip

● Package functions separately

If you want even more control over your functions for deployment, you can
configure them to be packaged separately. This allows for more control to
optimize your deployment. To enable individual packaging, set individually to
true in the packaging settings of the service or the function.

Then for every function you can use the same patterns or artifact
configuration options. The patterns options will be merged with the service
options to create a patterns configuration for each function during
packaging.
service: my-service
package:
 individually: true
 patterns:
 - '!excluded-by-default.json'
functions:
 hello:
 handler: handler.hello
 package:
 # We're including this file so it will be in the final package of this function only
 patterns:
 - excluded-by-default.json
 world:
 handler: handler.hello
 package:
 patterns:
 - '!some-file.js'

You can also select which functions to be packaged separately, and have the
rest use the service package by setting the individually to true.
service: my-service
functions:
 hello:
 handler: handler.hello
 world:
 handler: handler.hello
 package:
 individually: true

● Development Dependencies

Serverless will auto-detect and exclude development dependencies based on
the runtime your service is using to ensure that only the production relevant
packages and modules are included in your ZIP file. This drastically reduces
the overall size of the deployment package which will be uploaded to the
cloud provider.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

You can opt out of automatic exclusion of development dependency by
setting the excludeDevDependencies to false:
package:
 excludeDevDependencies: false

9.6.1.10 Variables

The Serverless Framework provides a powerful variable system which allows you
to add dynamic data into your serverless.yml. With Serverless variables, you will
be able to do the following:

● Reference & load environment variables.

● Reference & load variables from CLI options.

● Recursively reference properties of any type from the same serverless.yml
file.

● Recursively reference properties of any type from other YAML or JSON files.

● Recursively nest variable references for ultimate flexibility.

● Combine multiple variable references to overwrite each other.

Constraints

You can only use variables in values attribute instead of key attribute in
serverless.yml. So you cannot use variables to generate dynamic logical IDs in the
custom resources.

Referencing Environment Variables

To reference environment variables, use the ${env:someProperty} syntax in your
serverless.yml.
service: new-service

provider:
 name: huawei
 runtime: Node.js14.18
 credentials: ~/.fg/credentials # path must be absolute
 environment:
 variables:
 ENV_FIRST: ${env:TENCENTCLOUD_APPID}

plugins:
 - serverless-huawei-functions

functions:
 hello:
 handler: index.hello

9.6.2 CLI Reference
Welcome to the Serverless CLI reference for FunctionGraph!

NO TE

Before continuing, Huawei Cloud credentials are required for using the CLI.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

9.6.2.1 Create
Creates a new service in the current working directory based on the specified
template.

● Create a service in the current working directory:
serverless create --template-url https://github.com/zy-linn/examples/tree/v3/legacy/huawei-Nodejs

● Create a service in a new folder using a custom template:
serverless create --template-url https://github.com/zy-linn/examples/tree/v3/legacy/huawei-Nodejs --
path my-service

Options
● --template-url or -u: A URL pointing to a remotely hosted template.

Required if --template and --template-path are not present.
● --template-path: The local path of your template. Required if --template

and --template-url are not present.
● --path or -p: The path where the service is created.
● --name or -n: The name of the service in serverless.yml.

Examples
● Create a new service

serverless create --template-url https://github.com/zy-linn/examples/tree/v3/legacy/huawei-Nodejs --
name my-special-service

This example generates a Node.js runtime in the current working directory for
the service with Huawei as the provider.

● Create a named service in a (new) directory
serverless create --template-url https://github.com/zy-linn/examples/tree/v3/legacy/huawei-Nodejs --
path my-new-service

This example will generate a Node.js runtime in the my-new-service directory
for the service with Huawei as the provider. This directory will be
automatically created if it does not exist. Otherwise Serverless will use the
already present directory.
Additionally, Serverless will rename the service according to the path you
provide. In this example, the service will be renamed to my-new-service.

9.6.2.2 Install

install Command
Install a service from a GitHub URL in the current working directory.
serverless install --url https://github.com/some/service

Options
● --url or -u: The services GitHub URL, which is required.
● --name or -n: Name for the service.

Examples
● Install a service from a GitHub URL

serverless install --url https://github.com/zy-linn/examples/tree/v3/legacy/huawei-Nodejs

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

This example will download the .zip file of the huawei-Nodejs service from
GitHub, create a new directory named huawei-Nodejs in the current working
directory, and unzip the file in this directory.

● Install a service from a GitHub URL with a new service name
serverless install --url https://github.com/zy-linn/examples/tree/v3/legacy/huawei-Nodejs--name my-
huawei-service

The execution process is as follows:

a. Download the .zip file of the huawei-Nodejs service from GitHub.
b. Create a new directory with the name my-huawei-service in the current

working directory.
c. Unzip the files in this directory.
d. Rename the service to my-huawei-service if serverless.yml exists in the

service root.
● Install a service from a directory in a GitHub URL

serverless install --url https://github.com/zy-linn/examples/tree/v3/legacy/huawei-Nodejs

In this example, the huawei-Nodejs service will be downloaded from GitHub.

9.6.2.3 Package
The serverless package command packages your entire infrastructure into
the .serverless directory by default and makes it ready for deployment.

package Command
serverless package

In this example, your service will be packaged. The package will be generated in
the default .serverless directory.

9.6.2.4 Deploy

deploy Command
The serverless deploy command deploys your entire service via the Huawei Cloud
API. Run this command when you have edited the serverless.yml file.
serverless deploy

Artifacts
After running the serverless deploy command, all created deployment artifacts
will be placed in the .serverless folder of the service.

9.6.2.5 Info
By default, the serverless info command is used to display information about
deployed services.

info Command
Run this command in the service directory to display information about deployed
services.
serverless info

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

9.6.2.6 Invoke

invoke Command
Invoke a deployed function. You can send event data, read logs, and view other
important information about function calls.
serverless invoke --function functionName

Options
● --function or -f: The name of the function that you want to invoke. Required
● --data or -d: Data you want to pass into the function.
● --path or -p: The path to a JSON file which contains the input data to be

transferred to the invoked function. This path is relative to the root directory
of the service.

Examples
● Simple function invocation

serverless invoke --function functionName

In this example the deployed function will be invoked and the result of the
invocation will be displayed in the terminal.

● Function invocation with data
serverless invoke --function functionName --data '{"name": "Bob"}'

In this example, the function will be invoked with the provided data and the
result will be displayed in the terminal.

● Function invocation with passed data
serverless invoke --function functionName --path lib/event.json

In this example, the JSON data in the lib/event.json file will be passed
(relative to the root of the service) while invoking the specified or deployed
function.
Example of event.json
{
 "key": "value"
}

9.6.2.7 Logs

logs Command
View the logs of a specific function.
serverless logs --function functionName

Options
● --function or -f: The function for obtaining the logs. Required.
● --count or -c: The number of logs to display.

Example
Retrieve logs
serverless logs --function functionName

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

This will display logs for the specified function.

9.6.2.8 Remove

remove Command

The serverless remove command will remove the deployed service defined in your
current working directory from the provider.
serverless remove

NO TE

Only the deployed service and all its resources will be removed. The code on the local
computer will be retained.

Example

Remove service
serverless remove

This command will remove the deployed service in your current working directory.

9.6.3 Event list

9.6.3.1 APIG Events

FunctionGraph can create function-based API endpoints through APIG.

To create HTTP endpoints as event sources for FunctionGraph, use the HTTP event
syntax.

HTTP Endpoint

In this setting, the first function should be run when someone accesses the API
endpoint via a GET request. You can get the URL for the endpoint by running the
serverless info command after deploying your service.

Here is an example:
serverless.yml

functions:
 hello:
 handler: index.hello
 events:
 - apigw:
 env_id: DEFAULT_ENVIRONMENT_RELEASE_ID
 env_name: RELEASE
 req_method: GET
 path: /test
 name: API_test

NO TE

For details about the handler signature used for such events, see the Handler.

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

9.6.3.2 OBS Events
Huawei Cloud functions can be triggered by different event sources, which can be
defined and configured through events.

OBS Events
In this example, an OBS event is set. Each time an object is uploaded to my-
service-resource, the event triggers the first function.
serverless.yml

functions:
 first:
 handler: index.first
 events:
 - obs:
 bucket: bucket
 events:
 - s3:ObjectCreated:Put
 - s3:ObjectCreated:Post
// index.js

exports.first = async (event, context) => {
 const response = {
 statusCode: 200,
 body: JSON.stringify({
 message: 'Hello!',
 }),
 };

 return response;
};

FunctionGraph
Developer Guide 9 Development Tools

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

10 Automated Deployment

10.1 Preparing an Environment
This section uses a Linux host as an example to describe how to set up a function
CI/CD environment using KooCLI and CodeArts.

ECS
This server functions as a CodeArts task deployment host to deploy and update
FunctionGraph functions.

● Specifications: 1 vCPU | 1 GiB
● Image: CentOS 8.2 64 bits
● Other: Configure an EIP because you will need to install the Python library

and CodeArts and configure the ECS as a deployment host.
● CodeArts uses this server as a deployment host through port 22 over SSH. For

high security, add the following IP addresses to the security group of the
server. Otherwise, authorization will fail.
42.202.130.147
49.4.3.11
122.112.212.206
139.159.226.153
49.4.85.127
124.70.46.237

Configuring a Security Group for the Deployment Host

1. Go to the Create IP Address Group page.
2. Set the parameters as prompted. For details about the parameters, see

Creating an IP Address Group . Then, click Create Now.
– Name: Enter ipGroup-clouddeploy.
– IP Address:

42.202.130.147
49.4.3.11

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

https://support.huaweicloud.com/intl/en-us/devcloud/index.html
https://console-intl.huaweicloud.com/vpc/?locale=en-us#/vpc/ipGroups/create
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/vpc_IPAddressGroup_0003.html

122.112.212.206
139.159.226.153
49.4.85.127
124.70.46.237

3. Return to the network console, choose Access Control > Security Groups in
the navigation pane on the left, and click Create Security Group. For details
about how to configure a security group, see Creating a Security Group.
Then click Create Now.
– Name: Enter functions-deploy.
– Enterprise Project: Enter default.

4. Go to the details page of functions-deploy, click the Inbound Rules tab, and
click Add Rule to add an inbound rule.
Set Priority to 1, Protocol & Port to 22, and Source to the IP address group
ipGroup-clouddeploy. Then click OK.

Figure 10-1 Adding an inbound rule

5. Return to the ECS console, click the ECS name, and change the security group
to functions-deploy.

Installing Python Libraries
Run the following commands to install the pyyaml and pycryptodome libraries:
The two libraries will respectively parse the cam.yaml configuration file of your
function and encrypts and decrypts the function's environment variables.

pip3 install pyyaml
pip3 install pycryptodome

Installing KooCLI
1. Install KooCLI.

Remotely log in to the purchased ECS, and run the following command to
install KooCLI:
curl -sSL https://ap-southeast-3-hwcloudcli.obs.ap-southeast-3.myhuaweicloud.com/cli/latest/
hcloud_install.sh -o ./hcloud_install.sh && bash ./hcloud_install.sh

Figure 10-2 Installing KooCLI

2. Initialize KooCLI.
Run the following command to initialize KooCLI:
hcloud configure init

Enter an access key ID (AK), secret access key (SK), and region name. For
details about how to obtain them, see 3 and 4.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013748715.html

Figure 10-3 Initializing KooCLI

3. Obtain an access key (AK/SK).
– If you have access to the console, log in, and create an access key on the

My Credentials page. For details, see Creating an Access Key. An AK/SK
file is downloaded. Generally, it is named credentials.csv. As shown in
the following figure, the file contains a username, AK, and SK.

Figure 10-4 Content of the credentials.csv file

– If you do not have access to the console, request the administrator to
create an access key for you on the IAM console in case your access key is
lost or needs to be reset. For details, see Managing Access Keys for an
IAM User.

4. Obtain a region name.
For details, see Regions and Endpoints.

Figure 10-5 Obtaining region information

10.2 Hosting Function Code with CodeArts

10.2.1 Step 1: Create a Project
1. Log in to the CodeArts console and access the CodeArts page. Click Go to

Workspace.
2. On the Project tab page, choose Templates > Scrum and click Select.
3. Enter project name function and retain the default settings for other

parameters.
4. Click OK.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_02_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_02_0003.html
https://developer.huaweicloud.com/intl/en-us/endpoint?FunctionGraph
https://console-intl.huaweicloud.com/devcloud/?locale=en-us#/dashboard

10.2.2 Step 2: Host Function Code
1. On the function project page, choose Code > Repo in the navigation pane on

the left and click Create Repository.

2. Set Repository Type to Custom and click Next.

3. Set Repository Name to functions, retain the default values for other
parameters, and click OK.

4. Go to the functions repository. Create a deploy directory for storing the
deploy.py code of the function.

Figure 10-6 Creating a directory

NO TE

The deploy.py script will read the function configuration file cam.yaml and construct
an hcloud command to update the function code and configuration. For details about
the configurations in cam.yaml, see Analyzing cam.yaml. Logs generated when
executing this script will be recorded in the /home/function/deploy/function.log file.

5. Create another directory named helloworld, with a complete structure.

Figure 10-7 Complete function directory structure

– helloworld: the helloworld function

– cam.yaml: the configuration file

– code: function code directory, which stores the index.py file

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

10.2.3 Step 3: Configure a Deployment Host
1. In the navigation pane on the left, choose Settings > General > Basic

Resources. On the displayed page, click Create Host Cluster.

2. Enter deploy-function in the Cluster Name text box, set other parameters as
shown in Figure 10-8, and click Save.

Figure 10-8 Creating a host cluster

3. On the Target Hosts tab page, click Add Host.
Select Importing ECS, import the ECS cloud server in Preparing an
Environment, enter the username, password, and SSH port number 22 of the
server, and click OK.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

4. If connectivity verification is successful, the host is added.

10.2.4 Step 4: Set Up a Pipeline for Updating the Function
Deployment Script

The pipeline allows you to release the function deployment script deploy.py to the
deployment host for function updates.

Creating a Build Task
1. Log in to the CodeArts console, choose CodeArts Build in the navigation

pane, and click Go to CodeArts Build.
2. On the Build page, click Create Task. Set basic information by referring to

Figure 10-9 and click Next.

Figure 10-9 Creating a build task

3. Select Blank Template and click OK.
4. Click the Parameters tab, add the codeBranch and releaseVersion

parameters inCustom page, and enable Runtime Settings.

Figure 10-10 Configuring the version parameter

5. Click the Build Actions tab, click Add Build Actions, and select Upload to
Release Repo. The Upload to Release Repo action is displayed in the left
pane.

6. Click the Upload to Release Repo action, and set parameters.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

https://console-intl.huaweicloud.com/devcloud/?locale=en-us#/dashboard

Figure 10-11 Setting parameters

– Action Name: Enter Upload to Release Repo.
– Package Location: Enter deploy/deploy.py.
– Version: Enter ${releaseVersion}.

Creating a Deployment Task
1. Return to the CodeArts console. In the navigation pane, choose Deploy. Click

Create Application.
2. On the Basic Information tab page, set the application basic information. Set

Name to update-function-deploy, retain the default values for other
parameters, and click Next.

3. Select Blank Template and click OK.
4. On the Deployment Actions tab page, add Select Deployment Source.
5. Set Source to Artifact and configure the deployment source.

– Environment: Select the host cluster deploy-function.
– Software Package: Enter /functions-deploy-build/${releaseVersion}/

deploy.py.
– Download Path: Enter /home/function/deploy.

6. Click the Parameters tab, add the codeBranch and releaseVersion
parameters inCustom page, and enable Runtime Settings.

Figure 10-12 Configuring the version parameter

Configuring a Pipeline
1. Return to the CodeArts console. In the navigation pane, choose CodeArts

Pipeline. Click Go to CodeArts Pipeline.
2. Access the pipeline console and click Create Pipeline.
3. On the Basic Information page, set the pipeline name to pipeline-update-

function-deploy, set other parameters by referring to Figure 10-13, and click
Next.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

Figure 10-13 Creating a pipeline

4. Configure Build and Check.

a. Add a build task, and select the function-deploy-build task.

Figure 10-14 Adding a task

b. Set releaseVersion as a pipeline parameter.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

Figure 10-15 Setting releaseVersion

c. Click Save.
5. Configure a deployment task.

a. Add a stage named Deploy after Build_and_Check, set Task Execution
to Serial, and click Save.

Figure 10-16 Configuring the stage

b. Click Add Task to add a deployment task named DeployScript, and
select the update-function-deploy task.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

Figure 10-17 Adding a task

Figure 10-18 Configuring the task

Set releaseVersion as a pipeline parameter.

Figure 10-19 Setting releaseVersion

c. Click Save.
6. On the Basic Information tab page, change the pipeline task name to

pipeline-update-function-deploy and click Save.
7. Execute the pipeline.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

a. Set the runtime parameter releaseVersion to 1.0.0 and click Execute.
b. Wait till the deploy.py script is released.

Figure 10-20 Execution successful

10.2.5 Step 5: Set Up a Function Update Pipeline
The pipeline allows you to release and update the helloworld function code in the
functions repository to FunctionGraph.

Creating a Build Task
1. Choose Build & CloudArtifact > CloudBuild, and click Create Task.
2. Select functions for Source Code Repository and Blank Template for the

template.
3. Add these three actions: Run Shell Commands, Upload Files to OBS, and

Upload Deployment Package to CloudRelease.

a. Configure the Run Shell Commands action.
Build a function deployment package.
cd helloworld
zip helloworld_deploy.zip cam.yaml
Build a function code package.
cd code
zip -rp helloworld.zip *

Figure 10-21 Run Shell Commands

b. Configure the Upload Files to OBS action.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

Figure 10-22 Upload Files to OBS

▪ Action Name: Enter Upload Function Package to OBS.

▪ Build Directory: Enter helloworld/code/helloworld.zip.

▪ Bucket Name: Specify a private bucket to store the function code ZIP
package.

▪ OBS Directory: Enter function.

c. Configure the Upload Deployment Package to CloudRelease action.

Figure 10-23 Upload Deployment Package to CloudRelease

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

▪ Action Name: Enter Upload Deployment Package to
CloudRelease.

▪ Package Location: Enter helloworld/helloworld_deploy.zip.

▪ Version: Enter ${releaseVersion}.

4. On the Parameters tab page, add releaseVersion and enable Runtime
Settings.

Figure 10-24 Setting parameters

5. On the Basic Information tab page, change the task name to pipeline-
update-function-deploy and click Save.

Creating a Deployment Task
1. Choose Build & CloudArtifact > CloudDeploy, and click Create Task.
2. Select Blank Template and click Next.
3. Add the actions Select Deployment Source and Run Shell Commands.

Figure 10-25 Adding deployment actions

a. Configure the Select Deployment Source action.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

Figure 10-26 Setting action name to "Download Function Deployment
Package to Deployment Host"

▪ Action Name: Enter Download Function Deployment Package to
Deployment Host.

▪ Host Group: Select deploy-function.

▪ Software package: Select /functions-helloworld-build/$
{releaseVersion}/helloworld_deploy.zip.

▪ Download Path: Enter /home/function/deploy.

b. Configure the Run Shell Commands action.

Figure 10-27 Setting action name to "Deploy Function"

▪ Action Name: Enter Deploy Function.

▪ Host Group: Select deploy-function.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

▪ Shell Commands:
cd /home/function/deploy
unzip -o helloworld_deploy.zip -d helloworld_deploy
python3 deploy.py helloworld_deploy "${key}"

4. Add two parameters.
– releaseVersion: Use the default value 1.0.0 and enable Runtime

Settings.
– key: Enter a password and enable Private Parameter.

Figure 10-28 Setting parameters

5. On the Basic Information tab page, change the task name to update-
function-deploy and click Save.

Configuring a Pipeline
1. Choose Build & CloudArtifact > CloudPipeline, and click Create Pipeline.
2. Select functions for Source Code Repository and Blank Template for the

template.
3. Configure Build and Check.

a. Add a build task, and select the functions-helloworld-build task.

Figure 10-29 Adding a task

b. Set releaseVersion as a pipeline parameter.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

Figure 10-30 Setting releaseVersion

c. Click Save.
4. Configure a deployment task.

a. Add a stage named Deploy after Build_and_Check, set Task Execution
to Serial, and click Save.

Figure 10-31 Configuring the stage

b. Click Add Task to add a deployment task named
DeployhelloworldScript, and select the update-function-deploy task.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

Figure 10-32 Adding a task

c. Set releaseVersion as a pipeline parameter.

Figure 10-33 Setting releaseVersion

d. Click Save.
5. On the Basic Information tab page, change the pipeline task name to

pipeline-update-function-helloworld and click Save.
6. Execute the pipeline.

Set the runtime parameter releaseVersion to 1.0.0 and click Execute.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

10.3 Sample Code of deploy.py

Sample Code

The following is a sample code of deploy.py for automated deployment.

This example is used for automating the deployment and update of Huawei Cloud
FunctionGraph functions, covering both configuration and code updates. The script
parses configuration files, runs update commands via the CLI, decrypts encrypted
data, and records logs for traceability. For details, see the code comments.

-*-coding:utf-8 -*-

import os
import sys
import json
import logging
import subprocess
from yaml import load
from base64 import b64decode
from Crypto.Cipher import AES

need: pip install pyyaml
try:
 from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
 from yaml import Loader, Dumper

logging.basicConfig(level=logging.INFO,
 filename='function.log',
 filemode='a',
 format='%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s')

def decrypt(json_input, key):
 # We assume that the key was securely shared beforehand
 try:
 b64 = json.loads(json_input)
 json_k = ['nonce', 'header', 'ciphertext', 'tag']
 jv = {k: b64decode(b64[k]) for k in json_k}
 cipher = AES.new(key.encode(), AES.MODE_GCM, nonce=jv['nonce'])
 cipher.update(jv['header'])
 plaintext = cipher.decrypt_and_verify(jv['ciphertext'], jv['tag'])
 return plaintext.decode()
 except (ValueError, KeyError) as e:
 raise e

def generate_update_function_config_cmd(new_config, old_config, key):
 # Function handler
 handler = new_config['handler']
 # Runtime (required and not modifiable)
 runtime = new_config['runtime']
 # Memory
 memory_size = new_config['memorySize']
 # Timeout
 timeout = new_config['timeout']
 # Project ID
 project_id = new_config['projectID']
 # Command for updating the function configuration
 update_cmd = f'hcloud FunctionGraph UpdateFunctionConfig' \
 f' --cli-region="{region}"' \
 f' --function_urn="{function_urn}"' \
 f' --project_id="{project_id}"' \

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

 f' --handler="{handler}"' \
 f' --timeout={timeout}' \
 f' --memory_size={memory_size}' \
 f' --runtime="{runtime}"' \
 f' --func_name="{function_name}"'

 # Environment variables
 # Environment variables are directly overwritten. Manually configured variables that are not updated to
the cam.yaml file will be lost.

 user_data = new_config.get('userData', None)
 if user_data is not None:
 user_date_json_str = json.dumps(user_data)
 user_date_json_str = json.dumps(user_date_json_str)
 update_cmd = update_cmd + f' --user_data={user_date_json_str}'

 encrypted_user_data = new_config.get('encryptedUserData', None)
 if encrypted_user_data is not None:
 encrypted_user_data = decrypt(encrypted_user_data, key)
 encrypted_user_date_json_str = json.dumps(encrypted_user_data)
 update_cmd = update_cmd + \
 f' --encrypted_user_data={encrypted_user_date_json_str}'

 # Keep this part if a VPC is used.
 vpc_config = old_config.get('func_vpc', None)
 if vpc_config is not None:
 update_cmd = update_cmd + \
 f' --func_vpc.vpc_name={vpc_config["vpc_name"]}' \
 f' --func_vpc.vpc_id={vpc_config["vpc_id"]}' \
 f' --func_vpc.subnet_id={vpc_config["subnet_id"]}' \
 f' --func_vpc.cidr={vpc_config["cidr"]}' \
 f' --func_vpc.subnet_name={vpc_config["subnet_name"]}' \
 f' --func_vpc.gateway={vpc_config["gateway"]}'

 # Keep "xrole": "function-admin" and "app_xrole": "function-admin" if an agency is specified.
 xrole_config = old_config.get('xrole', None)
 if xrole_config is not None:
 update_cmd = update_cmd + f' --xrole="{xrole_config}"'

 app_xrole_config = old_config.get('app_xrole', None)
 if app_xrole_config is not None:
 update_cmd = update_cmd + f' --app_xrole="{app_xrole_config}"'

 # Configure the initializer and initialization timeout.
 initializer_handler = new_config.get('initializerHandler', None)
 initializer_timeout = new_config.get('initializerTimeout', None)
 if initializer_handler is not None and initializer_timeout is not None:
 update_cmd = update_cmd + \
 f' --initializer_handler="{initializer_handler}" ' \
 f'--initializer_timeout={initializer_timeout}'

 # Concurrency settings
 strategy_config = new_config.get('strategyConfig', None)
 if strategy_config is not None:
 concurrency = strategy_config.get('concurrency', None)
 # Maximum number of concurrent requests per instance
 concurrent_num = strategy_config.get('concurrentNum', None)
 update_cmd = update_cmd + \
 f' --strategy_config.concurrency="{concurrency}" ' \
 f'--strategy_config.concurrent_num={concurrent_num}'

 # Keep this part if a file system is mounted to the function.
 mount_config = old_config.get('mount_config', None)
 if mount_config is not None:
 mount_user = mount_config["mount_user"]
 update_cmd = update_cmd + \
 f' --mount_config.mount_user.user_id={mount_user["user_id"]}' \
 f' --mount_config.mount_user.user_group_id={mount_user["user_group_id"]}'
 func_mounts = mount_config["func_mounts"]

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

 i = 1
 for func_mount in func_mounts:
 update_cmd = update_cmd + \
 f' --mount_config.func_mounts.{i}.mount_resource="{func_mount["mount_resource"]}"' \
 f' --mount_config.func_mounts.
{i}.mount_share_path="{func_mount["mount_share_path"]}"' \
 f' --mount_config.func_mounts.{i}.mount_type="{func_mount["mount_type"]}"' \
 f' --mount_config.func_mounts.{i}.local_mount_path="{func_mount["local_mount_path"]}"'
 i = i + 1

 return update_cmd

def exec_cmd(cmd):
 proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE,
 stderr=subprocess.STDOUT)
 outs, _ = proc.communicate()
 return outs.decode('UTF-8')

def check_result(stage, exec_result):
 if "USE_ERROR" in exec_result:
 error_info = f"failed to {stage}: {exec_result}"
 logging.error(error_info)
 raise Exception(error_info)

 if "FSS.0409" in exec_result:
 error_info = f"failed to {stage}: {exec_result}"
 logging.error(error_info)
 # Return an error if the function code has no changes to update.
 return

 try:
 result_object = json.loads(exec_result)
 except Exception:
 error_info = f"failed to {stage}: {exec_result}"
 logging.error(error_info)
 raise Exception(error_info)

 if "error_code" in result_object:
 error_message = result_object["error_msg"]
 error_info = f"failed to {stage}: {error_message}"
 logging.error(error_info)
 raise Exception(error_info)

def generate_update_function_code_cmd():
 cmd = \
 f'hcloud FunctionGraph UpdateFunctionCode --cli-region="{region}"' \
 f' --function_urn="{function_urn}" --project_id="{project_id}"' \
 f' --code_url="{code_url}" --func_code.link="" --func_code.file="" --code_type="obs" '

 depend_list = old_function_code.get("depend_list", None)
 if depend_list is not None and len(depend_list) > 0:
 i = 1
 for depend_id in depend_list:
 cmd = cmd + f'--depend_list.{i}="{depend_id}"'

 return cmd

if __name__ == '__main__':
 deploy_function_path = sys.argv[1]
 key = sys.argv[2]
 f = open(os.path.join(deploy_function_path, "cam.yaml"))
 data = load(f, Loader=Loader)
 function_config = data['components'][0]
 function_name = function_config['name']
 function_properties = function_config['properties']

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

 region = function_properties['region']
 code_url = function_properties['codeUri']
 project_id = function_properties['projectID']
 # Obtain the function URN.
 function_urn = "urn:fss:" + region + ":" + project_id + \
 ":function:default:" + function_name + ":latest"
 logging.info(f"start to deploy functionURN:{function_urn}")

 # Query the function configuration.
 query_function_config_cmd = \
 f'hcloud FunctionGraph ShowFunctionConfig --cli-region="{region}"' \
 f' --function_urn="{function_urn}" --project_id="{project_id}"'
 result = exec_cmd(query_function_config_cmd)
 # Check whether a VPC and an agency have been configured for the function. If yes, they must be
included during function updates.
 old_function_config = json.loads(result)
 check_result("query function config", result)

 # Query the function code. Keep this part if a dependency is bound to the function.
 query_function_code_cmd = \
 f'hcloud FunctionGraph ShowFunctionCode --cli-region="{region}"' \
 f' --function_urn="{function_urn}" --project_id="{project_id}"'
 result = exec_cmd(query_function_code_cmd)
 old_function_code = json.loads(result)
 logging.info("query function %s code result: %s", function_urn, result)
 check_result("query function code", result)

 # Update the function code.
 query_function_code_cmd = generate_update_function_code_cmd()
 result = exec_cmd(query_function_code_cmd)
 logging.info("update function %s code result: %s", function_urn, result)
 check_result("update function code", result)

 # Update the function configuration.
 update_function_config_cmd = generate_update_function_config_cmd(
 function_properties, old_function_config, key)
 result = exec_cmd(update_function_config_cmd)
 logging.info("update function %s config result: %s", function_urn, result)
 check_result("update function config", result)

 logging.info(f"succeed to deploy function {function_urn}")

10.4 Analyzing cam.yaml

Example
metadata:
 description: This is an example application for FunctionGraph.
 author: Serverless team
 homePageUrl: https://www.huaweicloud.com/product/functiongraph.html
 version: 1.0.0
components:
 - name: helloworld
 type: Huawei::FunctionGraph::Function
 properties:
 region: cn-east-4
 codeUri: https://test-wkx.obs.cn-north-4.myhuaweicloud.com/helloworld.zip
 projectID: 0531e14952000f742f3ec0088c4b25cf
 handler: index.handler
 runtime: Python3.9
 memorySize: 256
 timeout: 60
 userData:
 key1: value1
 key2: value2
 encryptedUserData: '{"nonce": "ZEUOREFaiahRbMz+K9xQwA==", "header": "aGVhZGVy", "ciphertext":
"SCxXsffvpU1BF2Ci8a2RedNQ", "tag": "a+EYRVPOsQ+YpQkMuFg1wA=="}'

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

 initializerTimeout: 30
 initializerHandler: index.init_handler
 strategyConfig:
 concurrency: 80
 concurrentNum: 20

Parameter Description

Function configuration is included in properties of the cam.yaml file. The
following table details the function configuration.

Paramet
er

Manda
tory

Can Be
Update
d

Description

region Yes No Region where the function is located.

codeUri Yes No Location of the function code. It is an OBS
address where the function code package is
stored.

projectID Yes No Project ID.

handler Yes Yes Function handler.

runtime Yes No Execution environment. Options:
Python 2.7
Python 3.6
PHP 7.3
Java 8
Node.js 6.10
Node.js 8.10
C# (.NET Core 2.0)
C# (.NET Core 2.1)
C# (.NET Core 3.1)
Custom

memorySi
ze

Yes Yes Memory size. Unit: MB.
Enumerated values:
128, 256, 512, 768, 1024, 1280, 1536, 1792,
2048, 2560, 3072, 3584, 4096

timeout Yes Yes Timeout. Value range: 3s to 900s.

userData No Yes Name/value information defined for the
function.

encrypted
UserData

No Yes Name/value information to be encrypted.

initializer
Timeout

No Yes Initialization timeout. Value range: 1s to 300s.

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

Paramet
er

Manda
tory

Can Be
Update
d

Description

initializer
Handler

No Yes Function initializer. It must be in the format of
"xx.xx". For example, if the function file name
is myfunction.js and the initializer function is
initializer, the initializer is
myfunction.initializer.

concurren
tNum

No Yes Maximum number of concurrent requests per
instance.

concurren
cy

No Yes Maximum number of instances per function.
Value 0 indicates that a function is disabled,
and value –1 indicates that there is no
instance limit. For example, the value 100
means that a function can have a maximum
100 instances, including common and reserved
instances.

NO TE

1. Currently, the cam.yaml file does not support the update of VPC, agency, file system,
and dynamic memory settings. If a function uses a VPC, agency, file system, or dynamic
memory settings, configure them on the function details page. These settings will be
kept when executing the function update pipeline.

2. To avoid displaying encryptedUserData in plaintext in the cam.yaml file, the CI/CD
process encrypts its value using AES with Galois/Counter Mode (GCM). The ciphertext is
the value of encryptedUserData in the cam.yaml file. This value is transferred in
ciphertext in both the functions repository and the function update pipeline. It is
decrypted and updated when the function is deployed. Therefore, the key for AES
encryption must be provided when the function update pipeline is executed. Example:
Value of encryptedUserData in plaintext:
'{"password":"123"}'

After AES-GCM encryption:
{"nonce": "ZEUOREFaiahRbMz+K9xQwA==", "header": "aGVhZGVy", "ciphertext":
"SCxXsffvpU1BF2Ci8a2RedNQ", "tag": "a+EYRVPOsQ+YpQkMuFg1wA=="} ciphertext is the
encrypted value.

Keep the key for AES encryption properly.

Python AES-GCM example: https://pycryptodome.readthedocs.io/en/latest/src/
cipher/modern.html?highlight=GCM#gcm-mode

The AES-GCM encryption script is as follows:

import json
from base64 import b64encode
from Crypto.Cipher import AES
import sys

if __name__ == '__main__':
 key = sys.argv[1].encode()
 data = sys.argv[2].encode()
 header = b"header"
 cipher = AES.new(key, AES.MODE_GCM)

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

https://pycryptodome.readthedocs.io/en/latest/src/cipher/modern.html?highlight=GCM#gcm-mode
https://pycryptodome.readthedocs.io/en/latest/src/cipher/modern.html?highlight=GCM#gcm-mode

 cipher.update(header)
 ciphertext, tag = cipher.encrypt_and_digest(data)
 json_k = ['nonce', 'header', 'ciphertext', 'tag']
 json_v = [b64encode(x).decode('utf-8') for x in
 [cipher.nonce, header, ciphertext, tag]]
 result = json.dumps(dict(zip(json_k, json_v)))
 print(result)

To execute the script, run the following command on an ECS:

python3 aes_gcm_encrypt_tool.py "16-byte key" '{"password":"123"}'

FunctionGraph
Developer Guide 10 Automated Deployment

Issue 01 (2026-01-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

	Contents
	1 Function Development Overview
	1.1 Function Runtimes
	1.2 Initializer
	1.3 Supported Trigger Events for FunctionGraph
	1.4 Function Project Packaging Rules
	1.5 Referencing DLLs in Functions

	2 Node.js
	2.1 Function Development Overview
	2.2 Developing a Node.js Event Function
	2.3 Developing an HTTP Function Using Node.js
	2.4 Node.js Function Template
	2.5 Creating a Dependency for a Node.js Function
	2.6 Developing a Node.js Function Using Huawei Cloud SDKs

	3 Python
	3.1 Function Development Overview
	3.2 Developing a Python Event Function
	3.3 Creating an Event Function Using a Container Image Built with Python
	3.4 Creating an HTTP Function Using a Container Image Built with Python
	3.5 Python Function Template
	3.6 Creating a Dependency for a Python Function
	3.7 Developing a Python Function Using the Huawei Cloud SDK

	4 Java
	4.1 Function Development Overview
	4.2 Developing a Java Event Function
	4.2.1 Developing Functions in Java (Using IDEA to Create a Java Project)
	4.2.2 Developing Functions in Java (Using an IDEA Maven Project)

	4.3 Developing an HTTP Function Using Java
	4.4 Creating an Event Function Using a Container Image Built with Java
	4.5 Creating an HTTP Function Using a Container Image Built with Java
	4.6 Java Function Template
	4.7 Creating a Dependency for a Java Function

	5 Go
	5.1 Function Development Overview
	5.2 Developing a Go Event Function
	5.3 Developing an HTTP Function Using Go
	5.4 Creating an Event Function Using a Container Image Built with Go
	5.5 Creating an HTTP Function Using a Container Image Built with Go

	6 C#
	6.1 C# Function Development Overview
	6.2 Developing a C# Event Function
	6.2.1 Developing a C# Event Function Using IDE
	6.2.2 JSON Serialization and Deserialization
	6.2.2.1 Developing a C# Function Using .NET Core CLI
	6.2.2.2 Developing a C# Function Using Visual Studio

	7 PHP
	7.1 PHP Function Development Overview
	7.2 Developing a PHP Event Function
	7.3 PHP Function Template
	7.4 Creating a Dependency for a PHP Function

	8 Custom Runtime
	9 Development Tools
	9.1 FunctionGraph and IaC
	9.2 Local Debugging with VSCode
	9.3 Eclipse Plug-in
	9.4 PyCharm Plug-in
	9.5 Serverless Devs
	9.5.1 Introduction
	9.5.2 Key Configuration
	9.5.3 Using Commands
	9.5.3.1 deploy
	9.5.3.2 version
	9.5.3.3 Project Migration fun2s
	9.5.3.4 remove
	9.5.3.5 alias
	9.5.3.6 YAML File

	9.5.4 Huawei Cloud FunctionGraph YAML Specifications
	9.5.5 Global Parameters of Serverless Devs

	9.6 Serverless Framework
	9.6.1 Usage Guide
	9.6.1.1 Introduction
	9.6.1.2 Quick Start
	9.6.1.3 Installation
	9.6.1.4 Credentials
	9.6.1.5 Service
	9.6.1.6 Functions
	9.6.1.7 Events
	9.6.1.8 Deploy
	9.6.1.9 Package
	9.6.1.10 Variables

	9.6.2 CLI Reference
	9.6.2.1 Create
	9.6.2.2 Install
	9.6.2.3 Package
	9.6.2.4 Deploy
	9.6.2.5 Info
	9.6.2.6 Invoke
	9.6.2.7 Logs
	9.6.2.8 Remove

	9.6.3 Event list
	9.6.3.1 APIG Events
	9.6.3.2 OBS Events

	10 Automated Deployment
	10.1 Preparing an Environment
	10.2 Hosting Function Code with CodeArts
	10.2.1 Step 1: Create a Project
	10.2.2 Step 2: Host Function Code
	10.2.3 Step 3: Configure a Deployment Host
	10.2.4 Step 4: Set Up a Pipeline for Updating the Function Deployment Script
	10.2.5 Step 5: Set Up a Function Update Pipeline

	10.3 Sample Code of deploy.py
	10.4 Analyzing cam.yaml

